A Practical Approach to Quantitative Metal Analysis of Organic Matrices

MARTIN C. BRENNAN

WILEY

Contents

Pı	Preface		xiii	
Bi	iograp	hy		xv
A	Acknowledgements			xvii
1	A P	actical Approach to Q	Quantitative Metal Analysis of Organic	
	Mat	rices Using ICP-OES		1
	1.1	Introduction and Basic	Overview	1
	1.2	Schematic Representat	tion of the Energies Generated by Atomic	
		Spectroscopic Method	S	4
	1.3	Excitation Energy (Qu	antum Theory and Atomic Spectra)	5
	1.4	Ionisation Energy and	Number of Excited Atoms	7
	1.5	Width of Atomic Line	s	9
		1.5.1 Natural Broade	ning	9
		1.5.2 Doppler Broad	ening	9
		1.5.3 Lorentzian Bro	adening or Pressure Broadening	9
		1.5.4 Holtsmark Bro	adening or Resonance Broadening	11
		1.5.5 Field Broadeni	ng or Stark Broadening	11
		1.5.6 Self-Absorption	n and Self-Reversal Broadening	11
	1.6 Brief Summary of Atomic Spectroscopic Techniques Used		omic Spectroscopic Techniques Used	
		for Elemental Analysis	S	12
		1.6.1 The Atomic Al	bsorption Spectrophotometer	12
		1.6.2 Atomic Fluores	scence Spectroscopy	13
		1.6.3 Direct Current	Plasma Optical Emission Spectrometry	
		(DCP-OES)		13
		1.6.4 Microwave Ind	uced Plasma (MIP)	14
		1.6.5 Glow Discharg	e Optical Emission Spectrometry (GD-OES)	15
		1.6.6 Inductively Co	upled Plasma Optical Emission Spectrometry	
		(ICP-OES)		15
	1.7	Summary: Application	s of Atomic Spectroscopy	16
	Refe	rences		18

2	Inst	rumenta	ations Associated with Atomic Spectroscopy	21
	2.1	Instrun	nentation	21
	2.2	Types	of Plasma Sources	24
		2.2.1	Direct Current Plasma Atomic Emission Spectrograph	25
			Microwave Induced Plasma	25
			Optical Emission Spectroscopy	26
	2.3		e Introduction Systems	30
		2.3.1	Mechanical Transfer of Sample/Standards Using	
			Peristaltic Pump, Pressure Valves, Motorised Syringes, etc.	31
		2.3.2	Nebulisers	31
			Brief Outline of Atomic Spectroscopy Hyphenated Systems	39
	2.4		Chambers	43
	2.5		ES Torches	45
	2.6			49
	2.6.1 Grating Orders		Grating Orders	51
	2.7		Detectors	53
		_	Photomultiplier Tubes	53
		2.7.2	Charge Coupled Devices	55
	Refe	rences	charge coupled befrees	58
				50
3	Met	hodolog	ies of Metal Analysis of Organic Matrices Using ICP-OES	59
	3.1	Sample	e Preparation Techniques and Methods of Analysis	59
	3.2	Definir	ng Goals	60
	3.3	Steps i	n Chemical Analytical Protocol	61
	3.4	Sampli	ing and its Importance	62
	3.5	Sample	Preparation Methods	63
		3.5.1	Direct Analysis of Organic Solutions	64
		3.5.2	Sample Dissolution	65
		3.5.3	Chemical Extraction of Metals from Organic Matrices	65
		3.5.4	Dry Ashing without Retaining Aids	66
			Dry Ashing with Retaining Aids	69
		3.5.6	Acid Digestion Using Microwave Oven	69
		3.5.7	Oxygen Bomb Flask Combustion (Low Pressure)	71
		3.5.8	High Pressure Oxygen Combustion	72
		3.5.9	Sample Preparation Using Fusion Methods	73
		3.5.10	Analysis Using Slurry Solution Method	74
			Sample Preparation Using Leaching Method	75
			Sample Preparation Using a UV Digester	75
	3.6		pectral Corrections Using ICP-OES	76
		3.6.1	Effect of Solvents on ICP-OES	76
		3.6.2	Effect of Viscosity on Signal Response	77
		3.6.3	Comparison of Nebulisation Efficiency of Solvents	.,
		2.3.5	Using ICP-OES	78
		3.6.4	Choice of Carrier Liquid	80
	3.7		dology of Measurement	81
	5.1	3.7.1	Choice of Standard Materials	82
		V.1.1	Choice of Standard Materials	02

		3.7.2 Quantitative Analysis Using Calibration Graph Method	82
		3.7.3 Quantitative Analysis Using Standard Addition Method	85
		3.7.4 Quantitative Analysis Using Internal Standard Method	87
		3.7.5 Quantitative Analysis Using Matrix Matching Method	88
		3.7.6 Quantitative Analysis Using Flow Injection Technique	89
	3.8	Validation of an Analytical Method	90
		3.8.1 Method Validation of Analysis of Organic Matrices	91
	3.9	Control and Range Charts	99
		Brief Outline of Measurement Uncertainty	101
		rences	105
4	Anal	lysis of Plastics, Fibres and Textiles for Metals Content	
	Usin	g ICP-OES	107
	4.1	A Brief History of Natural and Synthetic Plastic Materials	107
	4.2	A Brief History of Chemistry of Plastics	109
	4.3	Chemical Structure of Plastics	110
	4.4	Polymerization Process of Plastics	111
		4.4.1 Polymerisation by Addition Reactions	112
		4.4.2 Polymerisation by Condensation Reactions	112
	4.5	Additives in Plastics	113
	4.6	Methods of Sample Preparation for Metal Content of Plastics,	
		Fibres and Textiles	115
		4.6.1 Sample Preparation Using Dissolution Method	115
		4.6.2 Sample Preparation Using Dry Ashing Methods	117
		4.6.3 Sample Preparation Using Microwave Acid Digestion Method	119
		4.6.4 Sample Preparation Using Oxygen Bomb Combustion Method	121
	4.7	Comparative Study of Methods of Analysis of Plastic Samples	
		for Metals Content	121
	4.8	Study of Leaching of Metals from Plastics	123
		4.8.1 Study of Leaching of Metals from Children's Toys	124
	4.9	Analysis for Toxic Metals in Plastics and Non-Electrical	
		Additives Used in Electrical and Electronic Components as	
		Required by RoHS	125
		4.9.1 Method for Metal Analysis of Plastics and Non-Electrical	
		Additives Used in Electrical and Electronic Products	127
	4.10	Conclusion	131
	Refe	erences	132
5	Mat	al Analysis of Virgin and Crude Petroleum Products	133
J	5.1	Introduction	133
	5.2	Brief Introduction to Refining Process in the Petroleum Industry	134
	5.3	Metals in Crude Oils and Petroleum Products	135
	5.4	Requirements for the Determination of Metal Content in Virgin	
	J.7	and Crude Oils	136

5.5	Wear Metals and I	Metal Contaminants in Lubricating Oils	138
5.6	Brief Outline of th	ne Determination of Metals in Organic Materials	
	Using Atomic Spe	ectroscopy Methods	139
5.7	Application of Atomic Spectroscopic Techniques in the Analysis		
	of Virgin and Wea	r Oils for Metals Content	140
	5.7.1 Choice of	Solvents Suitable for Metal Analysis	
	of Crude a	nd Lubricating Oils Using ICP-OES	141
	5.7.2 Selection of	of Representative Samples in the Study of Metal	
	Analysis of	f High Viscosity and Low Viscosity Oil Blends	141
	5.7.3 Physical Pr	roperties of Selected Solvents for Dissolving High	
	Viscosity a	nd Low Viscosity Oils for Metal Analysis	142
	5.7.4 Methods of	f Sample Preparation for Metal Analysis of High	
	Viscosity a	and Low Viscosity Oil Blends	142
		Study of Metal Analysis Using Kerosene,	
	Teralin and	Decalin Solvents Using ICP-OES	143
		ve Study of Non-Destructive Methods of Analysis	
	of Metals	'Spiked' in High Viscosity and Low Viscosity Oil	
	Blends Usi	ing ICP-OES	144
5.8	Analysis of Type	C and D Fractions for Metal Content Using	
Dry Ashing Method			149
5.9	Analysis of 'Metal Spiked' Oil Blends Using Microwave Acid		
	Digestion for Metals Content		150
5.10	5.10 Analysis of 'Metal Spiked' Oil Blends Using High Pressure		
	Oxygen Combusti	on for Metals Content	152
5.11	Comparative Stud	y of Analysis of Trace Levels of Toxic Metals	
		Acid Digestion and Oxygen Bomb Combustion	153
	5.11.1 Conclusion	n to Trace Analysis of Toxic Metals in Oil Products	155
5.12	5.12 Extraction Method for the Determination of Metals of High Viso		155
	and Low Viscosity Oil Blends		
5.13	Analysis of Old L	subricating Oil for Total Metal Content Using a	
	Slurry Method wi	th Internal Standard	156
5.14	Conclusion		158
Refe	rences		160
3.5 4	1 4 1 1 664	A and A Blanders	161
	al Analysis of Stru	ictural Adnesives	161
6.1	Introduction	£ A - 11	161 162
6.2	Setting and Curin		
6.3		odern Synthetic Adhesives	162
	• •	late Adhesives	162
		and Acrylic Adhesives	163
		uctural Adhesives	165
	6.3.4 Phenolic A		167
<i>C A</i>	•	ne Adhesives	167
6.4		Concomitant Metals in Adhesives	168
6.5	Metals Associated	l with Cyanoacrylate Adhesives	169

6.6	Non-Destructive Methods of Analysis for Metals Content in	
	Cyanoacrylate Adhesives	170
	6.6.1 General Method	170
	6.6.2 Standard Addition Method	171
	6.6.3 Internal Standard Method	171
6.7	Destructive Methods of Analysis for Metals Content in	
	Cyanoacrylate Adhesives	172
	6.7.1 Sample Preparation Using Ashing Method	173
	6.7.2 Sample Preparation Using Microwave Acid Digestion	174
	6.7.3 Sample Preparation Using Oxygen Bomb Combustion	174
6.8	Conclusion to Analysis of Cyanoacrylate Products	175
6.9	Metals Associated with Anaerobic Adhesives	176
6.10	Destructive Methods of Sample Preparation for Metals Content in	
	Anaerobic Adhesives	177
	6.10.1 Ashing Method of Type A and Type B Anaerobic Adhesives	177
	6.10.2 Sample Preparation of Anaerobic Adhesives Using	
	Microwave Acid Digestion	178
	6.10.3 Sample Preparation of Anaerobic Adhesive Using Oxygen	
	Bomb Combustion	180
	6.10.4 Conclusion to Analysis of Anaerobic Adhesives	180
6.11	Metal Analysis of Chemical Raw Materials Used to Manufacture	
	Anaerobic Adhesives	181
	6.11.1 Column Extraction of Metal from Liquid Monomers	181
6.12	Analysis of Metal Salt Content Dissolved in Aerosol Solvent(s)	182
	6.12.1 Sample Preparation and Analysis of Metals in Aerosol	183
6.13	A Study of the Effects of Anaerobic Adhesives on Metallic	
	Substrates	183
6.14	Metals Associated with Epoxy Adhesives	186
	6.14.1 Composition of Epoxy Adhesives	187
	6.14.2 Preparation of Epoxy Adhesive 'Spiked' with Ge(AcAc)BF ₄	187
	6.14.3 Determination of the Concentration of Ge(AcAc)BF ₄ in	
	Epoxy Adhesives Using Non-Destructive Methods	188
	6.14.4 Determination of the Concentration of Ge(AcAc)BF ₄ in	
	Epoxy Adhesives Using Destructive Methods	190
	6.14.5 Conclusion of Metal Analysis of Epoxy Adhesives	192
6.15	Metals Associated with Phenolic Adhesives	193
	6.15.1 Preparation of Typical Phenolic Adhesives Containing	
	Calcium and Copper Sulphonate Salts	193
	6.15.2 Non-Destructive Methods of Analysis of Phenolic Adhesives	194
6.16	Metals Associated with Polyurethane Adhesives	194
	6.16.1 Preparation and Analysis of Polyurethane Adhesives Containing	
	Organometallic Catalysts	195
6.17	Conclusion to Metal Analysis of Phenolic and Polyurethane	
	Adhesives	197
Refe	rences	198

	Hypl	henated and Miscellaneous Techniques Used with ICP-OES	199
	7.1	Introduction	199
	7.2	Coupling of Flow Injection Analysis with ICP-OES	200
		7.2.1 Theory of Flow Injection	201
		7.2.2 Configuration of ICP-OES/FIA System	202
		7.2.3 Signal Acquisition and Data Management	203
		7.2.4 Reproducibility of Measurements Using ICP-OES/FIA	204
		7.2.5 Dispersion and Diffusion of 'Sample Plug' in a Carrier Stream	205
		7.2.6 Metal Analysis of Organic Compounds Using ICP-OES-FIA	206
		7.2.7 Effect of Loop Size on Signal Response	207
		7.2.8 Comparative Measurements of Peak Height and Peak Area	208
		7.2.9 Effect of Viscosity Using ICP-OES/FIA	209
		7.2.10 A Study of Solvent Effects Using ICP-OES/FIA	210
		7.2.11 Determination of Limit of Detection and Quantification	210
		7.2.12 Conclusions of Analysis Using ICP-OES-FIA	211
	7.3	Use of Internal Standard(s) with ICP-OES	213
		7.3.1 Conclusion to Internal Standard(s) Study	217
	7.4	Coupling of Ion Chromatography with ICP-OES	218
		7.4.1 Preconcentration of Metals Using Ion Chromatography	220
		7.4.2 Analysis of Lanthanide and Transition Metals with	
		ICP-OES/IC	221
	7.5	Coupling of Gas Chromatography with ICP-OES or Atomic	
		Emission Detector	222
	7.6	Metal Analysis Using ICP-OES Coupled with Electro-Thermal	
Vaporisation		224	
	7.7	Surface Analysis Using Laser Ablation with ICP-OES	226
•		Determination of Thickener Content of Paints, Pharmaceutical	
		Products and Adhesives Using ICP-OES	227
	7.9	Metal Analysis of Metallo-Pharmaceutical Products	230
		7.9.1 Metallic Type Antibiotic Drugs	233
		7.9.2 Platinum and Palladium Drugs for Cancer Treatments	234
	7.10	Metal Analysis of Infusion and Dialysis and Bio-Monitoring	
		Solutions	235
	7.11	Organometallic Compounds	236
	7.12	Metals and Metalloid Analysis in Support of Forensic Science	237
	7.13	Non-Prescription Nutritional Dietary Supplements	239
	7.14	Trace Metal Analysis of Foods	244
		7.14.1 General Methods of Metal Analysis of Foods	244
		7.14.2 Conclusion to Food Analysis	246
	Refe	erences	246

7

Index 249