INTRODUCTION TO CONTROL ENGINEERING Jingxin DONG Changde ZHAO Shenshu XIONG Meifeng GUO ## Contents | 1 Introduction 1 | | |---|---| | 1.2 Basic Concept | • | | 2 Dynamic Mathema | atical Models of Physical Systems 21 | | 2.2 Linearization of 2.3 Laplace Trans 2.4 Inverse Laplac 2.5 Transfer Funct 2.6 System Functi 2.7 Signal Flow of 2.8 Mathematical 2.9 Drawing Block | tions of Typical Links 46 tions of Typical Links 46 tion Block Diagrams and their Component Parts 56 Graphs and Mason's Formula 61 Models of Controlled Objects 64 k Diagrams of Real Physical Systems 67 pts of State-Space Equations 79 | | 3 Transient Respons | e Analysis in the Time-Domain 99 | | 3.2 Transient Resp3.3 Transient Resp3.4 Performance I | Response and Typical Input Signals 99 ponse of First-Order Systems 103 ponse of Second-Order Systems 107 indices of Time-Domain Analysis 117 Transient Response of High-Order Systems 124 | | 4 | Frequency Response Analysis 145 | |----------|---| | | 4.1 Frequency Characteristics of Electromechanical Systems 145 4.2 Polar Plots 155 4.3 Logarithmic Plots 163 4.4 Determining the Transfer Function of a System using the Frequency Characteristic Curves 173 4.5 Determining the Frequency Characteristic of a System using | | | Unit Impulse Response 178 4.6 Log Magnitude-Phase Plot 179 | | | 4.7 Closed-Loop Frequency Responses of Control Systems 181 4.8 Dynamic Stiffnesses of Mechanical Systems 190 Summary 193 | | | Examples and Exercises 193 | | 5 | Control System Stability Analysis 203 | | | 5.1 The Basic Concept of System Stability 203 5.2 Necessary and Sufficient Conditions for System Stability 204 5.3 Algebraic Stability Criteria 206 5.4 Nyquist Stability Criterion 216 5.5 Determining the Stability of Time Delay Systems 230 5.6 Determining System Stability using Bode Diagrams 237 5.7 Relative Stability of Control Systems 242 5.8 Lyapunov Stability Criterion 247 Summary 249 Examples and Exercises 249 | | | Control System Error Analysis and Calculation 259 | | | 6.1 Concept of the Steady-State Error 259 6.2 Steady-State Errors caused by the Inputs 261 6.3 Steady-State Errors caused by Disturbances 268 | Approaches to Reducing System Error 275 Dynamic Error Coefficients 273 275 Examples and Exercises 132 Measuring Time-Domain Transient Response of Electromechanical 3.6 6.4 6.5 Summary Systems 128 Examples and Exercises Summary 132 | 49 | Control System Synthesis and Compensation 283 | |----|--| | | 7.1 System Performance Indices 283 7.2 System Compensation Overview 288 7.3 Series Compensation 289 7.4 PID Compensator 295 7.5 Feedback Compensation 303 7.6 Desired Logarithmic Frequency Characteristics of Typical Systems 307 7.7 A DC Motor Speed Regulation System 324 7.8 A Voltage-Position Servo System 335 7.9 Other Methods for Finding the PID Parameters 339 Summary 347 Examples and Exercises 347 | | 8 | Computer Control Systems 357 | | | 8.1 Structure of Computer Control System 357 8.2 Mathematical Descriptions of Linear Discrete Systems 365 8.3 z Transforms 371 8.4 Impulse Transfer Functions 389 8.5 Discrete State-Space Models 400 8.6 Stability Analysis of Linear Discrete Systems 405 8.7 Analog Design Method for Computer Control Systems 411 8.8 Error Characteristics Analysis of Discrete Systems 412 8.9 Approximate Design Methods for Digital Compensation Links 415 8.10 Digital PID Controller 419 Summary 423 Examples and Exercises 423 | | 9 | The Application of MATLAB in Control System Analysis and Compensation 433 | | | 9.1 Basic Characteristics of MATLAB 433 9.2 Control System Description in MATLAB 436 9.3 Partial Fraction Expansion 436 9.4 Time-Domain Response Analysis of Linear Systems 438 9.5 Frequency-Domain Response Analysis of Control Systems 443 9.6 Root Locus Plots of Control Systems 447 9.7 System Stability Analysis 448 9.8 Examples of Control System Simulation 450 9.9 System Block Diagram Input and Simulation Tool SIMULINK 451 Summary 459 | Exercises 460 Appendix A Table of Laplace Transforms 463 Appendix B Proof of the Optimal Frequency Ratio for the High-Order Optimum Model 467 References 471 473 Index