

Esau's Plant Anatomy

Meristems, Cells, and Tissues
of the Plant Body—
Their Structure, Function,
and Development

THIRD EDITION

Ray F. Evert

Contents

Preface		XV
Acknowledg	gments	xvii
General Ref	erences	xix
Chapter 1	Structure and Development of the Plant Body—An Overview	1
	Internal Organization of the Plant Body	3 3
	Distribution of the Vascular and Ground Tissues	3 6
	Development of the Plant Body	7
	The Body Plan of the Plant Is Established during Embryogenesis With Germination of the Seed, the Embryo Resumes Growth and Gradually Develops into	7
	an Adult Plant	11
	REFERENCES	12
Chapter 2	The Protoplast: Plasma Membrane, Nucleus, and Cytoplasmic Organelles	15
	Prokaryotic and Eukaryotic Cells	16
	Cytoplasm	17
	Plasma Membrane	19
	Nucleus	22
	Cell Cycle	23
	Plastids	25
	Chloroplasts Contain Chlorophyll and Carotenoid Pigments	25
		::

	Chromoplasts Contain Only Carotenoid Pigments	26
	Leucoplasts Are Nonpigmented Plastids	28
	All Plastids Are Derived Initially from Proplastids	28
	Mitochondria	31
	Peroxisomes	33
	Vacuoles	34
	Ribosomes	36
	REFERENCES	37
Chapter 3	The Protoplast: Endomembrane System, Secretory Pathways, Cytoskeleton,	
-	and Stored Compounds	45
	Endomembrane System	45
	The Endoplasmic Reticulum Is a Continuous, Three-dimensional	4)
	Membrane System That Permeates the Entire Cytosol	45
	The Golgi Apparatus Is a Highly Polarized Membrane System Involved in Secretion	48
	Cytoskeleton	49
	Microtubules Are Cylindrical Structures Composed of Tubulin Subunits	49
	Actin Filaments Consist of Two Linear Chains of Actin Molecules in the Form of a Helix	50
	Stored Compounds	52
	Starch Develops in the Form of Grains in Plastids	52
	The Site of Protein Body Assembly Depends on Protein Composition	53
	Oil Bodies Bud from Smooth ER Membranes by an Oleosin-mediated Process	54
	Tannins Typically Occur in Vacuoles but Also Are Found in Cell Walls	55
	Crystals of Calcium Oxalate Usually Develop in Vacuoles but	
	Also Are Found in the Cell Wall and Cuticle	56
	Silica Most Commonly Is Deposited in Cell Walls	58
	REFERENCES	58
Chapter 4	Cell Wall	65
.	Macromolecular Components of the Cell Wall	66
	Cellulose Is the Principal Component of Plant Cell Walls	66
	The Cellulose Microfibrils Are Embedded in a Matrix of Noncellulosic Molecules	67
	Principal Hemicelluoses	67
	Pectins	68
	Proteins	68
	Callose Is a Widely Distributed Cell Wall Polysaccharide	69
	Lignins Are Phenolic Polymers Deposited Mainly in Cell Walls of Supporting and Conducting	0)
	Tissues	69
	Cutin and Suberin Are Insoluble Lipid Polymers Found Most	0)
	Commonly in the Protective Surface Tissues of the Plant	71
	Cell Wall Layers	71
	The Middle Lamella Frequently Is Difficult to Distinguish from the Primary Wall	72
	The Primary Wall Is Deposited While the Cell Is Increasing in Size	72
	The Secondary Wall Is Deposited inside the Primary Wall Largely, If Not Entirely, after the	•
	Primary Wall Has Stopped Increasing in Surface Area	72
	Pits and Primary Pit-Fields	74
	Origin of Cell Wall during Cell Division	76
	Cytokinesis Occurs by the Formation of a Phragmoplast and Cell Plate	76
	Initially Callose Is the Principal Cell Wall Polysaccharide Present	
	in the Developing Cell Plate	78
	The Preprophase Band Predicts the Plane of the Future Cell Plate	78
	Growth of the Cell Wall	80
	The Orientation of Cellulose Microfibrils within the Primary Wall Influences the	
	The Orientation of Cellulose Microfibrils within the Primary Wall Influences the	82
		82

	Expansion of the Primary Cell Wall	83
	Cessation of Wall Expansion	84
	Intercellular Spaces	84
	Plasmodesmata	85
	Plasmodesmata May Be Classified as Primary or Secondary According to Their Origin	85
	Plasmodesmata Contain Two Types of Membranes: Plasma Membrane and Desmotubule	87
	Plasmodesmata Enable Cells to Communicate	88
	The Symplast Undergoes Reorganization throughout the Course of Plant Growth and	
	Development	90
	REFERENCES	91
		-
Chapter 5	Meristems and Differentiation	103
	Meristems	103
	Classification of Meristems	103
	A Common Classification of Meristems Is Based on Their Position in the Plant Body	104
	Meristems Are Also Classified According to the Nature of	101
	Cells That Give Origin to Their Initial Cells	106
	Characteristics of Meristematic Cells	106
	Growth Patterns in Meristems	107
	Meristematic Activity and Plant Growth	107
	Differentiation	
	Terms and Concepts	110
	Senescence (Programmed Cell Death)	110
		111
	Cellular Changes in Differentiation	113
		110
	Cells of Angiosperms Is Endopolyploidy	113
	One of the Early Visible Changes in Differentiating Tissues Is the	110
	Unequal Increase in Cell Size	113
	Intercellular Adjustment in Differentiating Tissue Involves	44/
	Covered Factors in Differentiation	114
	Causal Factors in Differentiation	115
	Tissue Culture Techniques Have Been Useful for the Determination	
	of Requirements for Growth and Differentiation	115
	The Analysis of Genetic Mosaics Can Reveal Patterns of Cell Division	
	and Cell Fate in Developing Plants	117
	Gene Technologies Have Dramatically Increased Our Understanding of Plant Development	117
	Polarity Is a Key Component of Biological Pattern Formation and	
	Is Related to the Phenomenon of Gradients	119
	Plant Cells Differentiate According to Position	119
	Plant Hormones	120
	Auxins	121
	Cytokinins	122
	Ethylene	123
	Abscisic Acid	123
	Gibberellins	123
	REFERENCES	123
Chapter 6	Apical Meristems	133
	Evolution of the Concept of Apical Organization	134
	Apical Meristems Originally Were Envisioned as Having a Single Initial Cell	134
	The Apical-Cell Theory Was Superseded by the Histogen Theory	134
	The Tunica-Corpus Concept of Apical Organization Applies Largely to Angiosperms	135
	The Shoot Apices of Most Gymnosperms and Angiosperms Show a Cytohistological	
	Zonation	136
	Inquiries into the Identity of Apical Initials	136
	Vegetative Shoot Apex	138
		- '

	The Presence of an Apical Cell Is Characteristic of Shoot Apices in Seedless Vascular	
	Plants	139
	The Zonation Found in the Ginkgo Apex Has Served as a Basis for the Interpretation of	
	Shoot Apices in Other Gymnosperms	140
	The Presence of a Zonation Superimposed on a Tunica-Corpus Configuration Is	
	Characteristic of Angiosperm Shoot Apices	141
	The Vegetative Shoot Apex of Arabidopsis thaliana	143
	Origin of Leaves	145
	Throughout the Vegetative Period the Shoot Apical Meristem Produces Leaves in a	
	Regular Order	145
	The Initiation of a Leaf Primordium Is Associated with an Increase	
	in the Frequency of Periclinal Divisions at the Initiation Site	147
	Leaf Primordia Arise at Sites That Are Correlated with the Phyllotaxis of the Shoot	149
	Origin of Branches	149
	In Most Seed Plants Axillary Meristems Originate from Detached Meristems	150
	Shoots May Develop from Adventitious Buds	152
	Root Apex	152
	Apical Organization in Roots May Be either Open or Closed	153
	The Quiescent Center Is Not Completely Devoid of Divisions under Normal Conditions	157
	The Root Apex of Arabidopsis thaliana	160
	Growth of the Root Tip	162
	REFERENCES	165
o1	~ 1 10H 1	
Chapter 7	Parenchyma and Collenchyma	175
	Parenchyma	175
	Parenchyma Cells May Occur in Continuous Masses as Parenchyma Tissue or Be	
	Associated with Other Cell Types in Morphologically Heterogeneous Tissues	176
	The Contents of Parenchyma Cells Are a Reflection of the Activities of the Cells	177
	The Cell Walls of Parenchyma Cells May Be Thick or Thin	178
	Some Parenchyma Cells—Transfer Cells—Contain Wall Ingrowths	179
	Parenchyma Cells Vary Greatly in Shape and Arrangement	181
	Some Parenchyma Tissue—Aerenchyma—Contains Particularly Large Intercellular Spaces	182
	Collenchyma	183
	The Structure of the Cell Walls of Collenchyma Is the Most Distinctive Characteristic of	
	This Tissue	184
	Collenchyma Characteristically Occurs in a Peripheral Position	185
	Collenchyma Appears to Be Particularly Well Adapted for Support of	
	Growing Leaves and Stems	187
	REFERENCES	187
C1	0.1	404
Chapter 8	Sclerenchyma	191
	Fibers	192
	Fibers Are Widely Distributed in the Plant Body	192
	Fibers May Be Divided into Two Large Groups, Xylary and Extraxylary	194
	Both Xylary and Extraxylary Fibers May Be Septate or Gelatinous	196
	Commercial Fibers Are Separated into Soft Fibers and Hard Fibers	197
	Sclereids	198
	Based on Shape and Size, Sclereids May Be Classified into a Number of Types	198
	Sclereids Like Fibers Are Widely Distributed in the Plant Body	199
	Sclereids in Stems	200
	Sclereids in Leaves	200
	Sclereids in Fruits	201
	Sclereids in Seeds	201
	Origin and Development of Fibers and Sclereids	202
	Factors Controlling Development of Fibers and Sclereids	205
	REFERENCES	207

Chapter 9	Epidermis	211
	Ordinary Epidermal Cells	214
	Epidermal Cell Walls Vary in Thickness	214
	The Most Distinctive Feature of the Outer Epidermal Wall Is the Presence of a Cuticle	215
	Stomata	218
	Stomata Occur on All Aerial Parts of the Primary Plant Body	218
	Guard Cells Are Generally Kidney-shaped	221
	Guard Cells Typically Have Unevenly Thickened Walls with Radially Arranged	
	Cellulose Microfibrils	222
	Blue Light and Abscisic Acid Are Important Signals in the Control of	
	Stomatal Movement	224
	Development of Stomatal Complexes Involves One or More Asymmetric Cell Divisions	225
	Different Developmental Sequences Result in Different	
	Configurations of Stomatal Complexes	228
	Trichomes	229
	Trichomes Have a Variety of Functions	229
	Trichomes May Be Classified into Different Morphological Categories	230
	A Trichome Is Initiated as a Protuberance from an Epidermal Cell	230
	The Cotton Fiber	230
	Root Hairs	234
	The Arabidopsis Trichome	235
	Cell Patterning in the Epidermis	237
	The Spatial Distribution of Stomata and Trichomes in Leaves Is Nonrandom	237
	There Are Three Main Types of Patterning in the Epidermis of Angiosperm Roots	238
	Other Specialized Epidermal Cells	239
	Silica and Cork Cells Frequently Occur Together in Pairs	239
	Bulliform Cells Are Highly Vacuolated Cells	241 242
	Some Epidermal Hairs Contain Cystoliths	243
	REFERENCES	243
Chapter 10	O Xylem: Cell Types and Developmental Aspects Cell Types of the Xylem Tracheary Elements—Tracheids and Vessel Elements—Are the Conducting Cells of the	255 256 256
	Xylem	260
	The Secondary Walls of Most Tracheary Elements Contain Pits	263
	Fibers Are Specialized as Supporting Elements in the Xylem	266
	Living Parenchyma Cells Occur in Both the Primary and Secondary Xylem	266
	In Some Species the Parenchyma Cells Develop Protrusions—Tyloses—That Enter the	
	Vessels	267
	Phylogenetic Specialization of Tracheary Elements and Fibers	268
	Vessel Element Length	268
	Deviations Exist in Trends of Vessel Element Evolution	270
	Like Vessel Elements and Tracheids, Fibers Have Undergone a Phylogenetic Shortening	271
	Primary Xylem Some Developmental and Structural Differences Exist between the Earlier and Later Formed	271
	Parts of the Primary Xylem	271
	The Primary Tracheary Elements Have a Variety of Secondary Wall Thickenings	273
	Tracheary Element Differentiation	276
	Plant Hormones Are Involved in the Differentiation of Tracheary Elements	280
	Isolated Mesophyll Cells in Culture Can Transdifferentiate Directly into	
	Tracheary Elements	281
	REFERENCES	283

Chapter 11	Xylem: Secondary Xylem and Variations in Wood Structure	291
	Basic Structure of Secondary Xylem	293
	The Secondary Xylem Consists of Two Distinct Systems of Cells, Axial and Radial	293
	Some Woods Are Storied and Others Are Nonstoried	294
	Growth Rings Result from the Periodic Activity of the Vascular Cambium	294
	As Wood Becomes Older, It Gradually Becomes Nonfunctional in Conduction and Storage	297
	Reaction Wood Is a Type of Wood That Develops in Branches	-//
	and Leaning or Crooked Stems	299
	Woods	302
	The Wood of Conifers Is Relatively Simple in Structure	302
	The Axial System of Conifer Woods Consists Mostly or Entirely of Tracheids	302
		303
	The Rays of Conifers May Consist of Both Parenchyma Cells and Tracheids	304
	The Wood of Many Conifers Contains Resin Ducts	
	The Wood of Angiosperms Is More Complex and Varied Than That of Conifers	306
	On the Basis of Porosity, Two Main Types of Angiosperm Wood Are Recognized: Diffuse-	207
	porous and Ring-porous	307
	The Distribution of Axial Parenchyma Shows Many Intergrading Patterns	309
	The Rays of Angiosperms Typically Contain Only Parenchyma Cells	310
	Intercellular Spaces Similar to the Resin Ducts of Gymnosperms	
	Occur in Angiosperm Woods	312
	Some Aspects of Secondary Xylem Development	312
	Identification of Wood	315
	REFERENCES	316
Chanter 12	Vascular Cambium	323
Chapter 12		323
	Organization of the Cambium The Meantles Combines Contains Two Types of Initials, Engineer Initials and Pay Initials	
	The Vascular Cambium Contains Two Types of Initials: Fusiform Initials and Ray Initials	323
	The Cambium May Be Storied or Nonstoried	325
	Formation of Secondary Xylem and Secondary Phloem	326 327
	Developmental Changes	330
	Phenomenon	332
	Domains Can Be Recognized within the Cambium	335
	Seasonal Changes in Cambial Cell Ultrastructure	336
•	Cytokinesis of Fusiform Cells	338
		341
	Seasonal Activity	711
	•	343
	Phloem	344
	Causal Relations in Cambial Activity	346
	REFERENCES	348
	REI EREITOEO	<i>3</i> 10
Chapter 13	Phloem: Cell Types and Developmental Aspects	357
¥	Cell Types of the Phloem	359
	The Angiospermous Sieve-Tube Element	360
	In Some Taxa the Sieve-Tube Element Walls Are Remarkably Thick	361
		364
	Sieve Plates Usually Occur on End Walls	364
	Callose Apparently Plays a Role in Sieve-Pore Development	504
	Changes in the Appearance of the Plastids and the Appearance of P-protein Are Early	265
	Indicators of Sieve-Tube Element Development	365
	Nuclear Degeneration May Be Chromatolytic or Pycnotic	372
	Companion Cells	372
	The Mechanism of Phloem Transport in Angiosperms	379
	The Source Leaf and Minor Vein Phloem	382

	Several Types of Minor Veins Occur in Dicotyledonous Leaves
	Type 1 Species with Specialized Companion Cells, Termed Intermediary Cells, Are
	Symplastic Loaders
	Species with Type 2 Minor Veins Are Apoplastic Loaders
	The Collection of Photoassimilate by the Minor Veins in Some Leaves May Not Involve an
	Active Step
	Some Minor Veins Contain More Than One Kind of Companion Cell
	Tubes
	The Gymnospermous Sieve Cell
	The Walls of Sieve Cells Are Characterized as Primary
	Callose Does Not Play a Role in Sieve-Pore Development in Gymnosperms
	Little Variation Exists in Sieve-Cell Differentiation among Gymnosperms
	Strasburger Cells
	The Mechanism of Phloem Transport in Gymnosperms
	Parenchyma Cells
	Sclerenchyma Cells
	Longevity of Sieve Elements
	Trends in Specialization of Sieve-Tube Elements
	Sieve Elements of Seedless Vascular Plants
	Primary Phloem
	REFERENCES
Chanter 1	4 Phloem, Secondary Phloem and Variations in Its Structure
спарист 1	4 Phloem: Secondary Phloem and Variations in Its Structure
	Conifer Phloem
	Angiosperm Phloem
	The Patterns Formed by the Fibers Can Be of Taxonomic Significance
	Secondary Sieve-Tube Elements Show Considerable Variation in Form and Distribution
	Differentiation in the Secondary Phloem
	Sclerenchyma Cells in the Secondary Phloem Commonly Are Classified as Fibers, Sclereids, and Fiber-Sclereids
	The Conducting Phloem Constitutes Only a Small Part of the Inner Bark
	Nonconducting Phloem
	The Nonconducting Phloem Differs Structurally from the Conducting Phloem
	Dilatation Is the Means by Which the Phloem Is Adjusted to the Increase in Circumference
	of the Axis Resulting from Secondary Growth
	REFERENCES
Chapter 1	5 Periderm
P	
	Occurrence
	Characteristics of the Components
	The Phellogen Is Relatively Simple in Structure
	Several Kinds of Phellem Cells May Arise from the Phellogen
	Considerable Variation Exists in the Width and Composition of Phelloderm
	Development of Periderm
	The Sites of Origin of the Phellogen Are Variety The Phellogen Is Initiated by Divisions of Various Kinds of Calls
	The Phellogen Is Initiated by Divisions of Various Kinds of Cells
	The Time of Appearance of the First and Subsequent Periderms Varies
	Morphology of Periderm and Rhytidome
	Polyderm
	Protective Tissue in Monocotyledons
	Wound Periderm
	Lenticels
	Three Structural Types of Lenticels Are Recognized in Woody Angiosperms
	The First Lenticels Frequently Appear under Stomata
	REFERENCES

Chapter 16	External Secretory Structures	447
	Salt Glands	449
	Salt Bladders Secrete Ions into a Large Central Vacuole	449
	Other Glands Secrete Salt Directly to the Outside	449
	The Two-celled Glands of the Poaceae	449
	The Multicellular Glands of Eudicotyledons	450
	Hydathodes	451
	Nectaries	452
	The Nectaries of Lonicera japonica Exude Nectar from Unicellular Trichomes	455
	The Nectaries of Abutilon striatum Exude Nectar from Multicellular Trichomes	456
	The Nectaries of Vicia faba Exude Nectar via Stomata	456
	The Most Common Sugars in Nectar Are Sucrose, Glucose, and Fructose	456
	Structures Intermediate between Nectaries and Hydathodes Also Exist	459
	·	459
	Colleters	461
	Osmophores	462
	Glandular Trichomes Secreting Lipophilic Substances	
	Glandular Trichome Development	463
	The Glandular Structures of Carnivorous Plants	465
	Stinging Hairs	466
	REFERENCES	466
Chapter 17	Internal Secretory Structures	473
-	Internal Secretory Cells	473
	Oil Cells Secrete Their Oils into an Oil Cavity	475
	Mucilage Cells Deposit Their Mucilage between the Protoplast and the Cellulosic Cell	1//
		476
	Wall Tannin Is the Most Conspicuous Inclusion in Numerous Secretory Cells	477
		478
	Secretory Cavities and Ducts	478
	The Best-Known Secretory Ducts Are the Resin Ducts of Conifers	479
	Development of Secretory Cavities Appears to Be Schizogenous	
	Secretory Ducts and Cavities May Arise under the Stimulus of Injury	481
	Kino Veins Are a Special Type of Traumatic Duct	482
	Laticifers	483
	On the Basis of Their Structure, Laticifers Are Grouped in Two Major Classes: Articulated	101
	and Nonarticulated	484
	Latex Varies in Appearance and in Composition	486
	Articulated and Nonarticulated Laticifers Apparently Differ from One Another	
	Cytologically	487
	Laticifers Are Widely Distributed in the Plant Body, Reflecting Their Mode of	
	Development	489
	Nonarticulated Laticifers	489
	Articulated Laticifers	491
	The Principal Source of Commercial Rubber Is the Bark of the Para Rubber Tree, Hevea	
	brasiliensis	493
	The Function of Laticifers Is Not Clear	495
	REFERENCES	495
Addendum:	Other Pertinent References Not Cited in the Text	503
Glossarv	·	521
Gioddai y	,,,	/ _ 1
Author Inde	ex	541
THEORY INC.		
Subject Ind	ex	567