SPIE

Optica SECOND EDITION

Robert E. Fischer Biljana Tadic-Galeb Paul R. Yoder

CONTENTS

	Preface Acknowledgments	xiii XV
Chapter 1.	Basic Optics and Optical System Specifications	1
	The Purpose of an Imaging Optical System	1
	How to Specify Your Optical System: Basic Parameters	4
	Basic Definition of Terms	11
	Useful First-Order Relationships	15
Chapter 2.	Stops and Pupils and Other Basic Principles	29
	The Role of the Aperture Stop	29
	Entrance and Exit Pupils	31
	Vignetting	32
Chapter 3.	Diffraction, Aberrations, and Image Quality	35
	What Image Quality Is All About	35
	What Are Geometrical Aberrations and Where Do	
	They Come From?	36
	What Is Diffraction?	40
	Diffraction-Limited Performance	43
	Derivation of System Specifications	45
Chapter 4.	The Concept of Optical Path Difference	49
	Optical Path Difference (OPD) and the Rayleigh Criteria	49
	Peak-to-Valley and RMS Wavefront Error	52
	The Wave Aberration Polynomial	55
	Depth of Focus	56
Chapter 5.	Review of Specific Geometrical Aberrations and How	
	to Get Rid of Them	59
	Spherical Aberration	60
	Coma	72
	Astigmatism	75

	Field Curvature and the Role of Field Lenses	78
	Distortion	85
	Axial Color	89
	Lateral Color	90
	Parametric Analysis of Aberrations Introduced by	
	Plane Parallel Plates	91
Chapter 6.	Glass Selection (Including Plastics)	95
	Material Properties Overview	95
	The Glass Map and Partial Dispersion	96
	Parametric Examples of Glass Selection	102
	How to Select Glass	106
	Plastic Optical Materials	109
	A Visual Aid to Glass Selection	111
Chapter 7.	Spherical and Aspheric Surfaces	115
	Definition of an Aspheric Surface	115
	Conic Surfaces	117
	Application of Aspheric Surfaces in Reflective	
	and Refractive Systems	119
	Guidelines in the Use of Aspheric Surfaces	124
	Specification of Aspheric Surfaces	126
Chapter 8.	Design Forms	129
	Introduction	129
	System Configurations for Refractive Systems	131
	System Configurations for Reflective Systems	138
	Reflective Systems, Relative Merits	144
	Refractive Systems, Relative Merits	146
	Mirrors and Prisms	147
	Design of Visual Systems	155
Chapter 9.	The Optical Design Process	167
	What Do We Do When We Optimize a Lens System?	168
	How Does the Designer Approach the Optical	
	Design Task?	171
	Sample Lens Design Problem	176

Chapter 10.	Computer Performance Evaluation	179
	What Is Meant by Performance Evaluation	179
	What Is Resolution?	180
	Ray Trace Curves	181
	Spot Diagrams	187
	Optical Path Difference	189
	Encircled Energy	189
	MTF	191
Chapter 11.	Gaussian Beam Imagery	199
	Beam Waist and Beam Divergence	201
	Collimation of Laser Beams	203
	Propagation of Gaussian Beams and Focusing	
	into a Small Spot	204
	Truncation of a Gaussian Beam	205
	Application of Gaussian Beam Optics in Laser Systems	208
	F-O Lenses in Laser Scanners	211
Chapter 12.	Basics of Thermal Infrared Imaging in the 3- to 5-	
	and 8- to 12-µm Spectral Bands (Plus UV Optics)	213
	The Basics of Thermal Infrared Imaging	213
	The Dewar, Cold Stop, and Cold Shield	217
	Cold Stop Efficiency	219
	Scanning Methods	222
	IR Materials	229
	Reduced Aberrations with IR Materials	236
	Image Anomalies	239
	Athermalization	246
	System Design Examples	250
	Optical Systems for the UV	255
Chapter 13.	Diffractive Optics	259
	Introduction	259
	The Many Faces of Diffractive Optics	262
	What Design and Modeling Tools Should I Use?	277
	How Are Diffractives Fabricated?	287
	Where Are Diffractives Used?	308
	References	318

Chapter 14.	Design of Illumination Systems	321
	Introduction	321
	Köhler and Abbe Illumination	322
	Optical Invariant and Etendue	324
	Other Types of Illumination Systems	329
Chapter 15.	Performance Evaluation and Optical Testing	333
	Testing with the Standard 1951 U.S. Air Force Target	333
	The Modulation Transfer Function	337
	Interferometry	340
	Other Tests	344
Chapter 16.	Tolerancing and Producibility	347
	Introduction	347
	What Are Testplates and Why Are They Important?	348
	How to Tolerance an Optical System	353
	How Image Degradations from Different Tolerances	
	Are Summed	356
	Forms of Tolerances	359
	Adjusting Parameters	364
	Typical Tolerances for Various Cost Models	366
	Example of Tolerance Analysis	367
	Surface Irregularities	374
	How Does Correlation Relate to Performance?	376
	Effect to Spot Diameter	377
	Effect to MTF: The Optical Quality Factor	379
	Beam Diameter and Surface Irregularity	383
	The Final Results	384
Chapter 17.	Optomechanical Design	389
	Environmental Considerations	389
	Applicable Design Guidelines	393
	Environmental Testing Methods	393
	Mechanical Parameters and Properties	393
	Typical Mechanical Property Values for Selected Materials	394
	Structural Design	396
	Vibration, Self-Weight Deflection, and Fundamental	
	Frequency	398
	Shock	400

	Rigid Housing Configurations	400
	Modular Construction	401
	Support Structure Configurations	405
	Establishing Axial and Lateral Preload Requirements	414
	Spherical and Crowned Lens Rims	415
	Interfaces for Other Optical Components	416
	Individual Lens Mounting Techniques	419
1	Surface Contact Interface Shapes	426
	Mounting Windows, Shells, and Domes	429
	Stress Consequences of Axial Preload	434
	Temperature Effects on Axial Preload	436
	Radial Stresses and Their Variations with	
	Temperature	439
	Bending Effects in Rotationally Symmetric Optics	439
	Multiple-Component Lens Assemblies	441
	Incorporating Prisms into the Design	452
	Mirror Mountings	459
	Mechanical Athermalization Techniques	467
	References	476
Chapter 18.	Optical Manufacturing Considerations	479
	Material	480
	Manufacturing	485
	Special Fabrication Considerations	492
	Relative Manufacturing Cost	502
	Sourcing Considerations	502
	Conclusion	504
Chapter 19.	Polarization Issues in Optical Design	507
	Introduction	507
	Introduction to Polarization	508
	The Mathematical Description of Polarized Light	513
	Some Polarization Phenomena	523
	Polarization Control Nuts and Bolts	535
	Polarization Analysis of an Optical System	555
	Minimizing Polarization Problems in Optical Design	559
	Polarization as a Tool in Optical System Design	560
	Summary	565
	Bibliography	567

Chapter 20.	Optical Thin Films	569
	Introduction	569
	Designing Optical Coatings	570
	Various Categories of Optical Coatings	571
	Optical Coating Process	578
	Coating Performance Versus Number of Layers	582
	Specifying Coating Requirements	583
	Relationship Between Production Cost,	
	Tolerances, and Quality	584
	Bibliography	585
Chapter 21.	Hardware Design Issues	587
	Off-the-Shelf Optics	587
	How to Effectively Work with Off-the-Shelf Optics	589
	Working with Off-the-Shelf Singlets and Doublets	590
	Example of Lens Used at Conjugates Different	
	from What It Was Designed	591
	Pupil Matching	594
	Development of a Lab Mockup Using	
	Off-the-Shelf Optics	595
	Stray Light Control	595
	Optomechanical Design	600
Chapter 22.	Lens Design Optimization Case Studies	603
	Error Function Construction	603
	Achromatic Doublet Lens Design	605
	Double Gauss Lens Design	610
	Digital Camera Lens	632
	Binocular Design	642
	Parametric Design Study of Simple Lenses Using Advanced	
	Manufacturing Methods	646
	Design Data for Double Gauss	655
Chapter 23.	Optical Sensor Systems Modeling and Analysis	659
	Introduction	659
	Image Formation	660
	Detector Arrays	663

Optical System Noise Characteristics

669

	Color Sensors	691
	Electronic Correction	696
	Camera Connectivity	697
	Bibliography	701
Chapter 2	4. Stray Light and Optical Scattering	703
	Introduction	703
•	Stray Light Scatter Sources	703
	Types of Scatter	711
	Modeling and Analysis Techniques	713
	Veiling Glare	715
	Cleanliness	716
	Suppression Techniques	717
	Bright Field and Dark Field	731
	How to Avoid Unwanted Stray Light	736
	Bibliography	737
Chapter 2	5. Bloopers and Blunders in Optics	739
	Distortion in a 1:1 Imaging Lens	739
	Zoom Perisdope	740
	Sign of Distortion	742
	Lens Elements That Are Not Necessary	744
	Pupil Problems	744
	Not Enough Light	745
	Athermalization Using Teflon	746
	Athermalization Specifications	746
	Bad Glass Choice	747
	Elements in Backward	747
	Insufficient Sampling of Fields of View or Aperture	748
	Images Upside Down or Rotated	749
	The Hubble Telescope Null Lens Problem	750
	Wrong Glass Type in a Precision Lens System	755
	Single Use Camera with a Diffractive Achromat	755
	Wrong Image Handedness	756
	Cemented Triplet as Part of an Imaging System	757
	Total Internal Reflection in a Cube Beamsplitter	758
	Diffractive Optics Issues	760
	Case of the Miscoated Mangin	763
	Telescopes and Polarization	765

Chapter 26.	Rule of Thumb and Hints	767
	General Optical Design Topics	767
	Optomechanical Topics	770
	Diffractive Optics	772
	Glossary	775
	Bibliography	785
	Index	787