MICROWAVE ENGINEERING

LAND & SPACE RADIOCOMMUNICATIONS

CONTENTS

Forewo	rd		xvii
Preface	•		xxi
Acknov	wledgme	ents	XXV
1. Elec	tromagr	netic Wave Propagation	1
1.1	Prope	rties of Plane Electromagnetic Wave	1
	1.1.1	Equation of Wave or Propagation	1
	1.1.2	Wave Velocity	3
	1.1.3		4
	1.1.4 1.1.5	Field Created in Free Space by Isotropic Radiator Wave Polarization	5 5
1.2		nt Continuous Aperture	9
	1.2.1	Expression of Directivity and Gain	9
	1.2.2	Radiation Pattern	12
	1.2.3	Near Field and Far Field	15
		Effective Aperture	17
	1.2.5	Skin Effect	17
1.3	Gener	ral Characteristics of Antennas	18
	1.3.1	Expression of Gain and Beamwidth	18
	1.3.2		20
	1.3.3	Characteristics of Polarization	23
1.4	Free-S	Space Loss and Electromagnetic Field Strength	25
	1.4.1	Attenuation of Propagation	25
	1.4.2	Electromagnetic Field Strength	26
1.5	Reflec	ctor and Passive Repeater	28
	1.5.1	Reflector in Far Field	28
	1.5.2	Passive Repeater in Far Field	33
	1.5.3	Reflector in Near Field (Periscope)	35
1.6	Mode	l of Propagation	37
	1.6.1	Spherical Diffraction	37
	1.6.2	Fresnel's Ellipsoid	38
1.7	Reflec	ction and Refraction	39
	171	General Laws	39

	1.7.2		nce Factor	42
	1.7.3		ess Factor	45
	1.7.4		f Limitation of Reflection Zone	45
1.8	Influer	ice of Atn	nosphere	47
	1.8.1	Refractiv		47
	1.8.2		Gradient of Refractive Index	47
	1.8.3		re of Radioelectric Rays	59
	1.8.4		Earth Radius	60
	1.8.5 1.8.6	Positive	n of Launch and Arrival Angles of Rays Minimal Value of Effective Earth-radius	63
		Factor		65
	1.8.7		heric Radio Ducts	67
		1.8.7.1	Conditions of Appearance	67
		1.8.7.2	Trajectories of Rays in Radio Duct	69
1.9	_	=	Diffraction	70
	1.9.1		on over Smooth Spherical Earth	72
	1.9.2		on over Single-Knife-Edge Obstacle	76
	1.9.3		on over Single Rounded Obstacle	77
	1.9.4		on over Double Isolated Edges	78
	1.9.5 1.9.6		on Loss General Curves	80
1 10			tion by Vegetation	81
1.10		•	Atmospheric Gases	81
	1.10.1		Attenuation	82
	1.10.2	Terrestri Slant Pat		83 84
	1.10.5		Elevation Angle Greater Than 10°	
		1.10.3.1	Elevation Angle between 0° and 10°	85 85
1.11	Attenu	ation and	Depolarization by Hydrometeors	85
	1.11.1	Rain Att	enuation	87
		1.11.1.1	Terrestrial Paths	90
		1.11.1.2	Earth-Space Paths	91
		1.11.1.3	Site Diversity (Rayleigh's Equations for Correlation between Random Variables)	94
		1.11.1.4	Attenuation Due to Gases, Clouds,	
			and Fog	99
	1.11.2		zation by Hydrometeors	99
		1.11.2.1	Polarization of Electromagnetic Wave	99
		1.11.2.2	Cross-Polarization Effects	100
1.12		ce of Iono	osphere	103
	1.12.1	Scintillat		104
	1.12.2	-	s Rotation	105
	1.12.3	Propagat	ion Time Delay	106

1.13	Therm	al Radiat	ion	106
	1.13.1	Origin o	of Thermal Radiation	106
	1.13.2		tion of Thermal Radiation	107
		BlackBo		108
	1.13.4	Gray Bo	ody	110
1.14	Probab	oility Dist	ributions	112
	1.14.1	Introduc	ction	112
	1.14.2	Gauss's	Law of Distribution	112
	1.14.3		h's Law of Distribution	114
	1.14.4	Other L	aws of Distribution	116
2. Princ	ciples of	Digital C	ommunication Systems	119
2.1	Signal	Processin	g	119
	2.1.1	Digital I	Multiplexing	120
		2.1.1.1		120
		2.1.1.2		120
		2.1.1.3	High-Order Digital Multiplexing	122
	2.1.2	Digital I	Modulation	123
		2.1.2.1	Usual Modulation Types	123
		2.1.2.2	Bandwidth Efficiency	125
		2.1.2.3	Power Spectral Density and Transmitted	
			Spectrum	125
2.2	Therm	al Noise		128
	2.2.1	Origin o	of the Thermal Noise	128
	2.2.2	Therma	l Noise Voltage	128
	2.2.3		between Thermal Radiation and Thermal	
		Noise		129
	2.2.4		nt Noise Temperature	131
	2.2.5	Noise F		131
	2.2.6		ent Noise Temperature	133
	2.2.7 2.2.8	Radiate Externa		135
	2.2.0			136
		2.2.8.1 2.2.8.2	Effect of External Noise Sources of Noise Temperature	136 138
2.3	Digital		1	
2.0			nication Systems Design	140
	2.3.1		Digital Communication Systems	140
		2.3.1.1	Gaussian Random Noise	141
		2.3.1.2 2.3.1.3	Additive White Gaussian Noise	141
		2.3.1.3	Detection of Binary Signals in Presence of AWGN	141
		2.3.1.4	Error Probability of Binary Detection	141
		2.3.1.5	Signal-to-Noise Ratio	143

		2.3.1.6	Error Probability of Binary Signal	144	
		2.3.1.7	Error Probability for Modulated Signal	144	
		2.3.1.8	General Characteristics of Signal	146	
		2.3.1.9	Choice of Modulation	148	
		2.3.1.10	Coding for Error Detection and Correction	148	
	2.3.2	Other E	Electrical Sources of Corruption	152	
		2.3.2.1	Intermodulation	152	
	2.3.3	Interfer	ence	160	
		2.3.3.1	Effect Due to Jamming	160	
		2.3.3.2	Calculation of Level of Jamming	164	
	2.3.4	Effects	of Reflection	166	
		2.3.4.1	Reflection on Ground	166	
		2.3.4.2	1	174	
		2.3.4.3	Standing Wave	176	
	2.3.5	Jitter, W	Vander, Phase Transients and Network		
		Synchro	nization	180	
		2,3.5.1	Jitter	181	
		2.3.5.2		181	
		2.3.5.3		181	
		2.3.5.4	Network Synchronization Engineering	181	
3. Mic	rowave I	Line-of-Sig	ght Systems	183	
3.1	Engin	eering of l	Line-of-Sight Systems	183	
	3.1.1	Introduc		183	
	3.1.2		hment of Radio Link Path Profile	183	
		3.1.2.1 3.1.2.2	Determination of Azimuth and Distance Data Necessary for Establishment of Path	184	
			Profile	185	
3.2	Design	n of Line-	of-Sight Microwave Radio Link:		
		Interferometric Method			
	3.2.1	Layout	of Path Profile	186	
	3.2.2	Clearan	ce Criteria	187	
	3.2.3		ion Line and Terrain Roughness	188	
	3.2.4		on Zone	189	
	3.2.5		ntial Time Delay	189	
	3.2.6		itial Attenuation	189	
	3.2.7		on in Space and/or Frequency Diversity	189	
	3.2.8		e of Line-of-Sight Radio Link	191	
	3.2.9		ngs in Ducting Conditions and Reflection	201	
		on Sea	C (T)	201	
		3.2.9.1	Case of Terrestrial Link in Desert Climate	201	

		3.2.9.2	Case of Long-Haul Link over Sea in	
			Temperate Climate	208
	3.2,10	Antenna	a Discrimination	212
	3.2.11	Pointing	of Antennas	214
		3.2.11.1	Centering of Source of Illumination	214
		3.2.11.2	Prepointing in Azimuth	214
		3.2.11.3	Final Pointing	215
		3.2.11.4		217
		3.2.11.5	Behavior in Extreme Climatic Conditions	218
3.3	Link E	Budget		218
	3.3.1	Introduc	etion	218
	3.3.2	Objectiv	res of Performance	219
		3.3.2.1	Recommendations ITU-T G.821 and	
			Associated ITU-R	219
		3.3.2.2	Recommendations ITU-T G.826 and	
			ITU-T G.827	222
		3.3.2.3	Recommendation ITU-T G.828	226
	3.3,3	Transmi	ssion Link Budget	227
		3.3.3.1	Median Received Power and Thermal	
			Noise Margin	227
		3.3.3.2	Receiver Thermal Threshold	228
3.4	Metho	ds of Pred	liction	229
	3.4.1	Recomn	nendation ITU-R P.530-8	229
		3.4.1.1	Geoclimatic Factor	230
		3.4.1.2	Path Inclination and Elevation Angle	231
		3.4.1.3	Percentage of Time of Fade Depth	232
		3.4.1.4	Method for Various Percentages of Time	232
		3.4.1.5	Prediction of Nonselective and Selective	
			Outages	233
		3.4.1.6	Prediction Method for Enhancement	234
		3.4.1.7	Conversion from Average Worst Month to	
		0.44.0	Average Annual Distributions	235
		3.4.1.8	Prediction of Outage in Unprotected	
		2.410	Digital Systems	237
		3.4.1.9	Prediction of Outage in Digital Systems	0.40
		3.4.1.10	Using Diversity Techniques	242
	2.40		Prediction of Total Outage Probability	253
	3.4.2 3.4.3		Oue to Obstacle	257
	3.4.3 3.4.4		e of Link Budget on of Method of Prediction (ITU-R P.530-9	260
	J.7.4	to P.530		260
		3.4.4.1		
		3.4.4.1	Multipath Occurrence Factor	260

		3.4.4.2	Conversion from Average Worst Month to	2.7
		2 4 4 2	Shorter Worst Periods of Time	267
		3.4.4.3	Occurrence of Simultaneous Fading on	267
		3.4.4.4	Multihop Links Optimum Choice of Antenna Heights	267
2 5	Dwataa		-	269
3.5			st Jamming	
	3.5.1		ion of Jamming Level	269
		3.5.1.1	Factor of Reduction of Interference by Antennas in Far Field	270
		3.5.1.2	Factor of Reduction of Interference by	270
		5.5.1.2	Antennas in Near Field	271
	3.5.2	Measure	ement of Jamming Level and Consecutive	
			ed Threshold	272
3.6	Frequ	ency Reus	e Techniques	273
	3.6.1	"Back-te	o-Back" Process	273
	3.6.2	"Front-t	o-Front" Process	274
	3.6.3	XPD M	odel and Measurement	275
		3.6.3.1	Test Link Characteristics	275
		3.6.3.2	Interpretation of Recordings	277
		3.6.3.3	Proposed Model When Using the	
			Interferometric Method	278
3.7			ween Various Diversity Techniques	279
3.8			Microwave Line-of-Sight Systems	282
	3.8.1	Introdu		283
		3.8.1.1	Availability Due to Propagation	283
		3.8.1.2	2 1	283
	3.8.2		ility of Microwave Terminal	283
	3.8.3	-	onal Availability of Microwave Radio Link	286
		3.8.3.1	Operational Availability Related to	
			Equipment	286
		3.8.3.2	Operational Availability Related to	200
			Propagation	289
4. Mic	rowave (Franshoriz	zon Systems	291
4.1	Engin	eering of	Transhorizon Systems	291
	4.1.1	Introdu	ction	291
	4.1.2	Establis	shment of Path Profile of Troposcatter Link	292
4.2	Metho	od of Pred	liction	293
	4.2.1	_	erm Median Basic Transmission Loss Due to	. م
		Forward	d Scatter	294
		4.2.1.1	Effective Antenna Heights	294
		4212	Effective Distance	295

		4.2.1.3	Angular Distance and Elevation Angles	
			to Radio Horizon Points	295
		4.2.1.4	Attenuation Function	298
		4.2.1.5	Long-Term Median Attenuation Due to	
			Atmospheric Absorption	300
		4.2.1.6	Frequency Gain Function	300
		4.2.1.7	Scattering Efficiency Correction	303
	4.2.2	Median	Long-Term Transmission Loss Variation	303
		4.2.2.1	Median Long-Term Transmission Loss	304
		4.2.2.2	Transmission Loss Not Exceeded for $p\%$ of Time	307
		4.2.2.3	Estimation of Prediction Error	311
		4.2.2.4	Service Probability	318
4.3	Link F		Service Producting	321
4.5	4.3.1	-	th Counting Lago	321
	4.3.1		th Coupling Loss the of Transverse Directivity	323
	4.5.2		·	
		4.3.2.1 4.3.2.2	Manual Process for Pointing Antennas	329
	422		Ų	331
	4.3.3		ding Speed	334
	4.3.4	-	on in Diversity	334
		4.3.4.1	Space Diversity	336
		4.3.4.2	1 2	337
		4.3.4.3	Quadruple Space and Frequency	227
		1211	Diversity	337
		4.3.4.4 4.3.4.5	Angle Diversity	337 339
	125		Polarization Diversity	
	4.3.5		vailability	339
	4.3.6		nce Bandwidth of Troposcatter Channel	340
		4.3.6.1		341
		4.3.6.2	Model of Rice	342
	40.5	4.3.6.3	Model of Collin	342
	4.3.7		ation of Diffraction and Troposcatter	2.42
	420		ission Losses	343
	4.3.8		ce of Reflection on Ground	344
	4.3.9	Statistic	sion of Annual Statistics to Worst-Month	346
4.4	Exam		anshorizon Links	346
	4.4.1		dge Diffraction Path	346
	4.4.2		ed-Edge Diffraction Path	350
	4.4.3		-Diffraction Path	352
	4.4.4		catter Link on Smooth Spherical Earth	355
	4.4.5	-	ned Troposcatter and Diffraction Link	358
	4.4.6		nd Frequency Diversity Troposcatter Link	364
		-		

	4.4.7	Digital A	Adaptive Modem	371
4.5	Other	Models of	Prediction	372
	4.5.1	Method	I of ITU-R	373
	4.5.2	Method	II of ITU-R	375
	4.5.3	Method	III of ITU-R	378
	4.5.4	Seasona	and Diurnal Variations in Transmission	
		Loss		383
4.6	Total	Availabilit	y of Troposcatter Links	383
	4.6.1	Physical	Principles of Propagation in Troposcatter	
		Mode		384
	4.6.2	Model o	f Calculation of Operational Availability	385
5. Sate	llite Cor	nmunicati	ons	391
5.1	Space	Geometry	of Satellite System	391
	5.1.1			391
	5.1.2	General	Characteristics of Orbits	391
		5.1.2.1		391
		5.1.2.2	Newton's Law	392
		5.1.2.3		392
		5.1.2.4	Origins of Disturbances of Orbits	393
	5.1.3	* *	f Satellite Systems	393
		5.1.3.1	Geometry of Low and Medium Circular Orbits	394
		5.1.3.2	Geometry of Connection Using	
			Geostationary Satellite	396
5.2	Config	guration of	f Satellite Communication System	402
	5.2.1	General	Characteritics of Repeater	402
		5.2.1.1	Zones of Coverage	403
		5.2.1.2	Frequency Bandwidth	403
		5.2.1.3	Figure of Merit	404
		5.2.1.4	Power Amplifier	404
		5.2.1.5	Power Flux Density at Saturation	405
		5.2.1.6	EIRP at Saturation	405
		5.2.1.7	Effective Input Noise Temperature of Repeater	405
	5.2.2	General	Characteristics of Earth Station	405
		5.2.2.1	Sources of Noise of Reception System	406
		5.2.2.2 5.2.2.3	Noise Temperature of Receiving Antenna Total Noise Temperature of Reception	406
		0.21,200	System	408
5.3	Link	Budget	•	408
	5.3.1	_	nk Path	408

	5.3.2	Resourc	e Allocation by Repeater	409
	5.3.3	Uplink I	Path	410
	5.3.4	Total Ca	arrier-to-Noise Ratio	411
	5.3.5	Power S	pectral Density of Repeater	412
	5.3.6		ncy Ratio of Repeater by Carrier	412
	5.3.7		n Size for Receiving Antenna	412
	5.3.8		Characteristics of Signal	413
	5.3.9		ance Objectives of Connection	413
	5.3.10	Multiple	-Access Techniques	414
		5.3.10.1	Frequency-Division Multiple Access	414
		5.3.10.2	Time-Division Multiple Access	414
		5.3.10.3	Code-Division Multiple Access	415
	5.3.11	Doppler	-Fizeau Effect	416
5.4	Metho	d of Predi	ction	418
	5.4.1	Earth-S _l	pace Propagation	418
		5.4.1.1	Atmospheric Attenuation	418
		5.4.1.2	Effects Due to Hydrometeors	419
		5.4.1.3	Antenna Gain Loss	419
		5.4.1.4	Effects Due to Tropospheric Scintillation	
			and Multipath	419
		5.4.1.5	Effects Due to Ionosphere	420
		5.4.1.6	External Noise Sources	420
	5.4.2	Prediction of Total Outage Probability		424
	5.4.3	Example	e of Link Budget	424
Referen	nces			425
Index				427