Computational Modeling of Gene Regulatory Networks

— a Primer

Contents

1.	Introduction	1
	The increasing role of computational analysis in biology	1
	What this book tries to achieve	3
	Who should read this book	4
	How this book is organized	6
	Acknowledgments	7
	Feedback	7
2.	What Is a System, and Why Should We Care?	9
	Linearity versus nonlinearity	9
	Nonlinear systems	13
	Nonlinear systems are the norm, not the exception, in biology	14
3.	What Models Can and Cannot Predict	17
	Interpolation versus extrapolation	17
	Iterative model refinement by experimental falsification of model	
	extrapolations	21
	The importance of remembering the limitations of data	22
	Cross-validation	23
	Function approximation versus classification	25
	Appendix: A model of biphasic kinetics	26

4.	Why Make Computational Models of Gene Regulatory Networks?	29
	What is a model?	29
	What is the goal of GRN modeling?	31
	Why make computational models of GRNs?	32
	Serendipitous benefits of computational GRN modeling	33
	Some pitfalls of modeling	34
	Good practice guidelines	35
	Appendix: Working definitions of 'genes' and 'Gene Regulatory Networks'	36
5,	Graphical Representations of Gene Regulatory Networks	39
	Desirable features of computational GRN representations	39
	Graphical representation of GRN activity in multiple compartments	43
	Computational network building, editing, and topological analysis	46
6.	Implicit Modeling via Interaction Network Maps	49
	Data interpretation through implicit modeling	49
	Global molecular interaction maps — Guilt by association	50
	Why do we need <i>global</i> molecular interaction maps?	53
	Example uses of interaction maps as predictive models	54
7.	The Biochemical Basis of Gene Regulation	61
	The probability of a chemical reaction	61
	A simple method for modeling stochastic molecular reaction events	63
	Chemical kinetics in cells are different from in vitro kinetics	65
	Compared to transcription, most signaling events are instantaneous	66
	How transcription factors find their targets on DNA	67
	DNA bending and looping by transcription factors	70
	Spatial localization: multi-compartment modeling	71

	Morphogen gradients	72
	Appendix: Stochastic simulation using Gillespie's algorithm	73
8.	A Single-Cell Model of Transcriptional Regulation	77
	Modeling strategy	77
	Modeling framework and notation	78
	A single-cell stochastic model of transcriptional regulation	79
	Recruitment of RNA polymerase II complex and transcription initiation	82
	Appendix: Simulation of the distribution of gene expression levels in a	
	population of genetically identical cells	89
9.	Simplified Models: Mass-Action Kinetics	99
	Why model with mass-action kinetics?	99
	The fundamentals of Ordinary Differential Equations (ODEs)	100
	Steady states	103
	Average promoter occupancy by a single transcription factor	104
	Promoter occupancy by two or more factors	105
	A two-step kinetic model of mRNA and protein concentration	107
	mRNA and protein levels at steady state	109
	Promoter occupancy as a function of regulator concentration	109
	Analytical solution of mRNA and protein time-course kinetics for genes	
	regulated by posttranscriptionally activated factors	110
	The time-course behavior of genes regulated by other genes	112
	The Boolean approximation to transcription kinetics	114
	In the absence of feedback, transcription factors in animals do not reach	
	steady state	115
	Positive and negative feedback loops can drive gene expression to fixed	
	steady-state levels	117
	Gene expression as a function of DNA-bound regulator activity	117

	Appendix A: ODE modeling with Berkeley Madonna	119
	Appendix B: Derivation of mathematical expressions for mRNA and	
	protein levels as a function of changing occupancy levels	120
	Appendix C: Time to steady state for genes not regulated by feedback	122
10.	Simplified Models: Boolean and Multi-valued Logic	123
	Background	123
	Discrete-variable piecewise linear ODEs	125
	Multi-valued logic networks	129
	Implicit-time logic networks (a.k.a. kinetic logic)	132
	Learning discrete logic models directly from data	135
	Linear ODE models of transcriptional regulation	136
	Process algebras	139
	Appendix: Logic simulation model files	140
11.	Simplified Models: Bayesian Networks	143
	A preview	145
	Probabilities: A brief review	146
	Continuous and discrete probability distributions	148
	The theoretical foundation of BNs: Conditional probabilities	149
	Making predictions with a given BN	151
	Modeling networks with feedback as Dynamic Bayesian Networks	154
	Constructing BNs directly from data	156
	Causality in BNs	161
	Computational efficiency in BNs	162
	Current limitations of Bayesian Networks	163
	Resources for BNs	164
	Appendix: Exploring BNs with Hugin	165

12.	The Relationship between Logic and Bayesian Networks	167
	Noisy logic networks	167
	Probabilistic Boolean Networks	169
	Learning PBNs from data	171
	Some useful properties of PBNs	172
13.	Network Inference in Practice	175
	A summary of the general approach to network reconstruction	175
	Learning logic models from gene expression data alone	178
	Learning continuous-valued network models from expression data	182
	Network structure building by data integration	184
14.	Searching DNA Sequences for Transcription Factor Binding Sites	189
	Consensus sequences	189
	Position Weight Matrices	191
	Visualizing PWMs with sequence logos	194
	A taxonomy of TFBS prediction algorithms	196
	Resources for TFBS prediction	201
	Some good practice guidelines	202
	Measuring the performance of binding site prediction algorithms	204
	Extracting predicted TFBSs from ChIP-chip data	206
	Appendix: DNA sequence processing	211
15.	Model Selection Theory	213
	Fitting error versus generalization error	213
	Model misspecification	214
	Model invalidation	215

	Model selection criteria	216
	How to calculate the log-likelihood value for a regression model	219
	Parameter counts of common modeling frameworks	221
	The effect of function complexity	222
	Multi-model averaging	223
	Other approaches to model refinement	224
16.	Simplified Models — GRN State Signatures in Data	225
	Principal Component Analysis	226
	Nonlinear PCA	232
	Multi-dimensional Scaling (MDS)	235
	Partial Least Squares (PLS)	237
	The implicit approach to pattern detection in complex data	237
	Appendix: Step-by-step example PCA transformations	239
17.	System Dynamics	243
17.	System Dynamics Transients and steady states	243 243
17.		
17.	Transients and steady states	243
17.	Transients and steady states Phase portraits	243 245
17.	Transients and steady states Phase portraits Parameter analysis	243 245 249
17.	Transients and steady states Phase portraits Parameter analysis Parameter optimization and the evolution of optimal dynamics	243 245 249 252
17.	Transients and steady states Phase portraits Parameter analysis Parameter optimization and the evolution of optimal dynamics Bistability through mutual inhibition	243 245 249 252 254
17.	Transients and steady states Phase portraits Parameter analysis Parameter optimization and the evolution of optimal dynamics Bistability through mutual inhibition Negative auto-regulation	243 245 249 252 254 255
17. 18.	Transients and steady states Phase portraits Parameter analysis Parameter optimization and the evolution of optimal dynamics Bistability through mutual inhibition Negative auto-regulation Mixed positive and negative feedback	243 245 249 252 254 255 258
	Transients and steady states Phase portraits Parameter analysis Parameter optimization and the evolution of optimal dynamics Bistability through mutual inhibition Negative auto-regulation Mixed positive and negative feedback Appendix: Analyzing feedback dynamics	243 245 249 252 254 255 258 260

	Failure tolerance versus graceful degradation	266
	Global and local perspectives	268
	Local sensitivity analysis	268
	Global sensitivity analysis	270
	The role of network topology in robustness	273
	Evolution of robustness	275
	Robustness to transcriptional noise	277
	Context and completeness of models	277
19.	GRN Modules and Building Blocks	279
	Hierarchical modularity in engineered systems	279
	Organizational principles in GRNs	281
	Network motifs in GRNs	283
	Functional building blocks	288
	Using network motifs and functional building blocks to decode GRNs	290
20.	Notes on Data Processing for GRN Modeling	293
	What type of data is best for modeling?	293
	Beware of the side-effects of the methods used to collect data	294
	How many time points are sufficient for modeling dynamics?	295
	In vivo versus ex vivo and in vitro data	296
	Using meaningful units to quantify data	297
	Misinterpreting data	297
21.	Applications of Computational GRN Modeling	299
	Overview	299
	GRN modeling challenges in medical systems biology	301
	Modeling hierarchical, distributed processing in the immune system	305

Ouo Vadis 311 The US\$1000 genome and its challenges 311 313 Single-cell biology Multi-scale modeling 315 Software engineering challenges 316 Becoming bilingual 318 Molecular biology is still in the discovery phase 319 Index 321