

WILEY-BLACKWELL

Contents

Pre	face	xv
I	Basic thermodynamic and biochemical concepts	1
	Fundamental thermodynamic concepts	2
	States of matter	2
	Pressure	2
	Temperature	5
	Volume, mass, and number	6
	Properties of gases	6
	The ideal gas laws	6
	Gas mixtures	8
	Kinetic energy of gases	9
	Real gases	9
	Derivation box 1.1 Relationship between the average velocity and pressure	10
	Liquifying gases for low-temperature spectroscopy	12
	Molecular basis for life	13
	Cell membranes	14
	Amino acids	15
	Classification of amino acids by their side chains	15
	DNA and RNA	18
	Problems	20
Pai	rt 1: Thermodynamics and kinetics	21
2	First law of thermodynamics	23
_	Systems	23
	State functions	25
	First law of thermodynamics	26
	Research direction: drug design I	27
	Work	29
	Specific heat	31
	Internal energy for an ideal gas	31
	Enthalpy	33

	Dependence of specific heat on internal energy and enthalpy	34
	Derivation box 2.1 State functions described using partial derivatives	34
	Enthalpy changes of biochemical reactions	38
	Research direction: global climate change	40
	References	44
	Problems	45
3	Second law of thermodynamics	46
	Entropy	47
	Entropy changes for reversible and irreversible processes	49
	The second law of thermodynamics	51
	Interpretation of entropy	52
	Third law of thermodynamics	53
	Gibbs energy	54
	Relationship between the Gibbs energy and the equilibrium constant	55
	Research direction: drug design II	56
	Gibbs energy for an ideal gas	58
	Using the Gibbs energy	59
	Carnot cycle and hybrid cars	60
	Derivation box 3.1 Entropy as a state function	63
	Research direction: nitrogen fixation	66
	References	69
	Problems	69
4	Phase diagrams, mixtures, and chemical potential	71
	Substances may exist in different phases	71
	Phase diagrams and transitions	72
	Chemical potential	73
	Properties of lipids described using the chemical potential	74
	Lipid and detergent formation into micelles and bilayers	75
	Research direction: lipid rafts	77
	Determination of micelle formation using surface tension	79
	Mixtures	82
	Raoult's law	85
	Osmosis	88
	Research direction: protein crystallization	88
	References	92
	Problems	92
5	Equilibria and reactions involving protons	94
	Gibbs energy minimum	94
	Derivation box 5.1 Relationship between the Gibbs energy and equilibrium constant	95
	Response of the equilibrium constant to condition changes	98
	Acid-base equilibria	99
	Protonation states of amino acid residues	105

	Buffers	106
	Buffering in the cardiovascular system	108
	Research direction: proton-coupled electron transfer and pathways	108
	References	111
	Problems	112
6	Oxidation/reduction reactions and bioenergetics	114
	Oxidation/reduction reactions	114
	Electrochemical cells	× 115
	The Nernst equation	116
	Midpoint potentials	117
	Gibbs energy of formation and activity	120
	Ionic strength	122
	Adenosine triphosphate	123
	Chemiosmotic hypothesis	124
	Research direction: respiratory chain	126
	Research direction: ATP synthase	128
	References	131
	Problems	132
7	Kinetics and enzymes	134
	The rate of a chemical reaction	134
	Parallel first-order reactions	137
	Sequential first-order reactions	139
	Second-order reactions	Ļ 40
	The order of a reaction	İ41
	Reactions that approach equilibrium	142
	Activation energy	143
	Research direction: electron transfer I: energetics	144
	Derivation box 7.1 Derivation of the Marcus relationship	146
	Enzymes	147
	Enzymes lower the activation energy	148
	Enzyme mechanisms	150
	Research direction: dynamics in enzyme mechanism	150
	Michaelis–Menten mechanism	151
	Lineweaver–Burk equation	155
	Enzyme activity	155
	Research direction: the RNA world	158
	References	160
	Problems	161
8	The Boltzmann distribution and statistical thermodynamics	163
	Probability	163
	Boltzmann distribution	165
	Partition function	166

	Statistical thermodynamics	167
	Research direction: protein folding and prions	168
	Prions	169
	Research direction: protein folding and prions Prions References Problems Art 2: Quantum mechanics and spectroscopy Quantum theory: introduction and principles Classical concepts Experimental failures of classical physics Blackbody radiation Photoelectric effect Atomic spectra Principles of quantum theory Wave-particle duality Schrödinger's equation Born interpretation General approach for solving Schrödinger's equation Interpretation of quantum mechanics Heisenberg Uncertainty Principle A quantum-mechanical world Research direction: Schrödinger's cat References Problems	171
	Problems	171
Par	t-2: Quantum mechanics and spectroscopy	173
9	Quantum theory: introduction and principles	175
	Classical concepts	175
	Experimental failures of classical physics	177
		177
	Photoelectric effect	180
	Atomic spectra	180
		182
		182
		184
	•	188
		190
		191
	- · · · · · · · · · · · · · · · · · · ·	192
		193
		194
		195
	Problems	196
10	· · · · · · · · · · · · · · · · · · ·	198
		198
	-	200
	-	200
	······································	201
	•	202
	-	202
		203
		203
		204
		205
	Two-dimensional particle in a box	207
	Tunneling Research directions probing biological membranes	209
	Research direction: probing biological membranes	211
	Research direction: electron transfer II: distance dependence	215
	References	218

218

Problems

11	Vibrational motion and infrared spectroscopy	221
	Simple harmonic oscillator: classical theory	221
	Potential energy for the simple harmonic oscillator	223
	Simple harmonic oscillator: quantum theory	223
	Derivation box 11.1 Solving Schrödinger's equation for the simple	
	harmonic oscillator	224
	Properties of the solutions	225
	Forbidden region	228
	Transitions	229
	Vibrational spectra	230
	Research direction: hydrogenase	232
	References	235
	Problems	235
12	Atomic structure: hydrogen atom and multi-electron atoms	238
	Schrödinger's equation for the hydrogen atom	238
	Derivation box 12.1 Solving Schrödinger's equation for the hydrogen atom	239
	Separation of variables	239
	Angular solution	240
	Radial solution	243
	Properties of the general solution	244
	Angular momentum	246
	Orbitals	247
	s Orbitals	247
	p Orbitals	2,51
	d Orbitals	252
	Transitions	253
	Research direction: hydrogen economy	254
	Spin	257
	Derivation box 12.2 Relativistic equations	258
	Multi-electron atoms	260
	Empirical constants	260
	Self-consistent field theory (Hartree–Fock)	261
	Helium atom	262
	Spin-orbital coupling	264
	Periodic table	265
	References	267
	Problems	267
13	Chemical bonds and protein interactions	270
	Schrödinger's equation for a hydrogen molecule	270
	Valence bonds	275
	The Hückel model	276
	Interactions in proteins	276

	Pepnae bonas	278
	Steric effects	278
	Hydrogen bonds	279
	Electrostatic interactions	280
	Hydrophobic effects	280
	Secondary structure	282
	Determination of secondary structure using circular dichroism	284
	Research direction: modeling protein structures and folding	284
	References	289
	Problems	289
14	Electronic transitions and optical spectroscopy	291
	The nature of light	291
	The Beer–Lambert law	293
	Measuring absorption	294
	Transitions	296
	Derivation box 14.1 Relationship between the Einstein coefficient and	
	electronic states	298
	Lasers	300
	Selection rules	301
	The Franck–Condon principle	302
	The relationship between emission and absorption spectra	303
	The yield of fluorescence	305
	Fluorescence resonance energy transfer	306
	Measuring fluorescence	306
	Phosphorescence	307
	Research direction: probing energy transfer using two-dimensional	
	optical spectroscopy	307
	Research direction: single-molecule spectroscopy	310
	Holliday junctions	312
	References	315
	Problems	315
15	X-ray diffraction and extended X-ray absorption fine structure	317
	Bragg's law	319
	Bravais lattices	320
	Protein crystals	322
	Diffraction from crystals	323
	Derivation box 15.1 Phases of complex numbers	325
	Phase determination	328
	Molecular replacement	328
	Isomorphous replacement	329
	Anomalous dispersion	329
	Model building	331
	Experimental measurement of X-ray diffraction	332

	Examples of protein structures	335
	Research direction: nitrogenase	336
	Extended X-ray absorption fine structure	339
	References	342
	Problems	342
16	Magnetic resonance	344
	NMR	344
	Chemical shifts	347
	Spin–spin interactions	348
	Pulse techniques	349
	Two-dimensional NMR: nuclear Overhauser effect	351
	NMR spectra of amino acids	352
	Research direction: development of new NMR techniques	352
	Determination of macromolecular structures	357
	Research direction: spinal muscular atrophy	357
	MRI	360
	Electron spin resonance	362
	Hyperfine structure	365
	Electron nuclear double resonance	365
	Spin probes	366
	Research direction: heme proteins	367
	Research direction: ribonucleotide reductase	369
	References and further reading	370
	Problems	371
Par	t 3: Understanding biological systems using physical chemistry	373
17	Signal transduction	375
	Biochemical pathway for visual response	375
	Spectroscopic studies of rhodopsin	377
	Bacteriorhodopsin	378
	Structural studies	380
	Comparison of rhodopsins from different organisms	384
	Rhodopsin proteins in visual response	387
	References and further reading	387
	Problems	388
18	Membrane potentials, transporters, and channels	390
	Membrane potentials	390
	Energetics of transport across membranes	391
	Transporters	394
	Ion channels	397
	References and further reading	402
	Problems	403

19	Molecular imaging	405
	Imaging in cells and bodies	405
	Green fluorescent protein	405
	Mechanism of chromophore formation	408
	Fluorescence resonance energy transfer	410
	Imaging of GFP in cells	412
	Imaging in organisms	414
	Radioactive decay	415
	PET	416
	Parkinson's disease	418
	References and further reading	419
	Problems	419
20	Photosynthesis	421
	Energy transfer and light-harvesting complexes	423
	Electron transfer, bacterial reaction centers, and photosystem I	425
	Water oxidation	430
	References and further reading	436
	Problems	437
Ans	swers to problems	439
Inde	ex	488
Fun	idamental constants	493
Con	aversion factors for energy units	493
The	periodic table	494