

The Lightning Flash

Edited by Vernon Cooray

Contents

	reface cknow	ledgemei	nts	XXI XXIII				
1	Cha	rge struct	ture and geographical variation of thunderclouds	1				
	Earle	e Williams	3					
	1.1	The for	mation of clouds	1				
	1.2	Local c	onditions necessary for thunderclouds	1				
	1.3	The gross charge structure of thunderclouds						
	1.4	Sprite-producing thunderclouds: mesoscale convective systems						
	1.5	Geogra	phical variability of thunderclouds	6				
		1.5.1	Environmental controls	6				
		1.5.2	Tropical thunderstorms	10				
		1.5.3		11				
			Winter thunderstorms	12				
	1.6	Referen	ces	12				
2			n electrification mechanisms	17				
		ın Jayarat						
	2.1	Introdu	•	17				
	2.2		gested mechanisms	19				
		2.2.1	The inductive mechanism	19				
		2.2.2	The convective mechanism	21				
		2.2.3	The selective ion capture theory	23				
		2.2.4	Drop breakup theory	23				
		2.2.5	Melting of ice	24				
		2.2.6	The Workman–Reynolds effect	24				
		2.2.7	The thermoelectric effect	25				
		2.2.8	Surface potential theories	25				
		2.2.9	The quasiliquid layer theory	27				
		2.2.10	Charging due to the fragmentation of ice	30				
	2.3		experiments	31				
	2.4	-	size effect	32				
	2.5		f chemical impurities	38				
	2.6	Referen	ces	40				

		f electrical (lischarges	45
	on Coora			
3.1	Introdu			45
3.2		efinitions		45
	3.2.1		e path and cross section	45
	3.2.2		city and mobility	46
	3.2.3		equilibrium and local thermal equilibrium	48
3.3		on processes	8	49
	3.3.1	Ionisation	due to electron impact	49
	3.3.2	Photoioni		52
	3.3.3	Thermal i	onisation	53
	3.3.4	Ionisation	caused by meta-stable excited atoms	55
	3.3.5	Ionisation	due to positive ions	55
3.4	Deionis	sation proces	sses	56
	3.4.1	Electron-	ion recombination	56
		3.4.1.1	Radiative recombination	57
		3.4.1.2	Dissociative recombination	57
		3.4.1.3	Three-body recombination	57
3.5	Other p	rocesses tha	t can influence the process of ionisation	57
	3.5.1	Electron a	attachment and detachment	57
	3.5.2	Excitation	n of molecular vibrations	60
	3.5.3	Diffusion		60
3.6	Cathod	e processes		62
	3.6.1	Photoelec	etric emission	62
	3.6.2	Thermior	nic emission	62
	3.6.3	Schottky	effect	64
	3.6.4	Field emi	ssion	65
	3.6.5	Incidence	of positive ions	65
3.7	Electric	al breakdow	vn	66
	3.7.1	Electron :	avalanche	68
	3.7.2	The space	charge electric field due to an avalanche	69
	3.7.3	Formation	n of a streamer	70
	3.7.4	Character	ristics of the streamers	73
		3.7.4.1	The physical processes taking place at the	
			streamer head and its propagation	73
		3.7.4.2	Propagation of the streamer discharges	77
		3.7.4.3	Physical properties of the positive streamer	
			channel	78
		3.7.4.4	Critical background electric field necessary	
			for streamer propagation	79
		3.7.4.5	Streamer speed	79
		3.7.4.6	Current in the streamer	79
		3.7.4.7	Potential gradient of the streamer channel	80
		3.7.4.8	Charge distribution along the streamer	
			channel	80

	3.7.5	Streamer-	to-spark transition and thermalisation	82
	3.7.6	Electrical	breakdown criterion in the presence of	
		streamer d	lischarges	84
		3.7.6.1	Plane uniform gap	84
		3.7.6.2	Nonuniform gap	85
3.8	Electrica	al breakdow:	n in very small gaps – Townsend's	
		wn mechani	· · · · · · · · · · · · · · · · · · ·	86
	3.8.1	Townsend	's experiment	86
	3.8.2		's theory of electrical breakdown	87
		3.8.2.1	Primary ionisation stage	88
		3.8.2.2	-	88
		3.8.2.3		
			criterion	91
		3.8.2.4	Townsend's mechanism in the presence of	
			electron attachment	92
3.9	Paschen	's law		93
- / -	3.9.1		nterpretation of the shape of the Paschen	
		curve	F	95
	3.9.2		f Paschen's law	96
3.10			(V–I) characteristics and the post breakdown	
	_	ow pressures	· · · · ·	96
	3.10.1	The glow		97
		-	Physical explanation	98
		3.10.1.2	The effect of changing the pressure	99
	3.10.2			100
	3.10.3		to arc transition	100
3.11		nce of spark		103
3.12	Corona discharges			
5.12	3.12.1		corona modes	104 105
	3.12.1	3.12.1.1		106
			Negative pulseless glow	107
		3.12.1.3	Negative streamers	107
	3.12.2		orona modes	107
	3.12.2	3.12.2.1		107
		3.12.2.2		108
			Positive glow	109
			Breakdown streamers	110
	3.12.3		breakdown and corona	110
3.13			trical breakdown conditions on atmospheric	110
3.13	condition		circal breakdown conditions on atmospheric	110
3.14			electrical breakdown	112
5.17	3.14.1		breakdown under the application of impulse	112
	3.17.1	voltages	oreakdown under the application of impuise	113
	3.14.2		nature of the electrical breakdown	114
3.15	The lon		nature of the electrical breaktiown	114
J.1J	THE IOH	g spark		114

	3.15.1	Streamer-	to-leader transition and the initiation of the	
		leader		114
	3.15.2		haracteristics of impulse breakdown in	
		rod-plane		115
		3.15.2.1	Positive breakdown	115
		3.15.2.2	Negative breakdown	117
		3.15.2.3	Inception and characteristics of first	110
		2.15.0.4	corona	119
		3.15.2.4 3.15.2.5	Leader velocity	120
		3.13.2.3	The potential gradient of the leader channel	121
		3.15.2.6	The final jump	121
		3.15.2.7	The critical radius	122
3.16	Humidi	ty effects	The critical radius	123
5.10	3.16.1		ectric field necessary for streamer	123
	5.10.1	propagatio		123
	3.16.2		on the corona development at the initiation of	
		long spark		123
	3.16.3	~ .	on leader propagation	124
3.17	Referen		1 1 0	124
The i	mechanis	m of the lig	htning flash	127
	n Cooray	_	inting man	12,
4.1	Introduc			127
4.2	The gro	und flash		127
4.3	The clo			130
4.4	Frequer	cy of lightn	ing discharges	131
	4.4.1	Cloud to g	ground flash ratio	132
	4.4.2	Ground fla	ash density	132
	4.4.3	-	ning activity	133
4.5			ng discharges in clouds	133
	4.5.1		of streamer discharges from a single	
		water drop		133
	4.5.2		of streamer discharges by a chain of	40-
	150	water drop		135
	4.5.3		s necessary for the streamer propagation and	120
	151		o leader transition	138
	4.5.4	leader	s necessary for the propagation of the	120
	4.5.5		s necessary for lightning initiation – a	139
	7.5.5	summary	s necessary for fighting inflation – a	139
	4.5.6		vay electron hypothesis	139
4.6			and the electromagnetic fields of ground	139
	flashes	- I		140

4.6.1	Prelimina	ry breakdown process	140
	4.6.1.1	Electromagnetic fields at ground level	
		generated by the preliminary breakdown	
		process	140
	4.6.1.2	Duration of the preliminary breakdown	
		process	142
	4.6.1.3	Location of the preliminary breakdown stage	
	1.0.1.5	in the cloud	142
	4.6.1.4	Physical nature of the preliminary	172
	4.0.1.4	breakdown process	143
4.6.2	Stannad L		144
4.0.2	Stepped le 4,6,2,1		
		Structure of the stepped leader	144
	4.6.2.2	Optically determined properties of the	1.45
	1.600	stepped leader	145
	4.6.2.3	The electric field generated by the stepped	
		leader	146
	4.6.2.4	Linear charge density and the total charge of	
		the leader channel	148
	4.6.2.5	Charge distribution along the leader	
		channel	150
	4.6.2.6	Leader current	151
	4.6.2.7	Bidirectional and unidirectional leader	
		concept	152
	4.6.2.8	Energy dissipation during the leader stage	154
	4.6.2.9	Stepped leader as a source of disturbance	154
	4.6.2.10	Interception of the stepped leader and	
		grounded structures	155
4.6.3	Return str	-	159
	4.6.3.1	The origin of the return stroke	159
	4.6.3.2	Optically determined properties	159
	4.6.3.3	Characteristics of the optical radiation	10,
		generated by the return stroke	161
	4.6.3.4	The properties of return stroke currents	10.
	110.511	measured at the base of the channel	165
	4.6.3.5	Electromagnetic fields generated by return	105
	7.0.5.5	strokes	170
4.6.4	Continuin		186
4.6.5	M compo		186
4.0.3			189
166	4.6.5.1	Origin inside the cloud	
4.6.6	K change:		189
	4.6.6.1	Origin	191
4.6.7	-	nt strokes	191
	4.6.7.1	General properties	191
4.6.8	Dart leade		192
	4.6.8.1	Optically determined properties	193

		4.6.8.2	Origin of the dart leader in the cloud	195
		4.6.8.3	Current and charge of dart leaders	196
		4.6.8,4	Static fields generated by dart leaders	196
		4.6.8.5	RF radiation from dart leaders	196
		4.6.8.6	The parameters that control the dart leader	
			speed	197
		4.6.8.7	Correlation between parameters of dart	
			leaders and return strokes	198
		4.6.8.8	Dart stepped leaders	199
		4.6.8.9	Chaotic leaders	200
4.7	Electron	nagnetic fie	elds generated by cloud flashes	201
	4.7.1	General i	features	201
	4.7.2	Radiation	n field pulse characteristics	202
		4.7.2.1	Large bipolar pulses	203
		4.7.2.2	Bursts of pulses similar to the dart stepped	
			leader pulses	203
		4.7.2.3	Narrow isolated pulses	206
		4.7.2.4	Microsecond scale pulses with a smooth rise	
			to peak	207
4.8			veen the ground flashes and cloud flashes	208
4.9			in return strokes and lightning flashes	208
4.10			g-generated electric and magnetic fields	212
	4.10.1		field mill or generating voltmeter	212
	4.10.2		whip antenna	213
	4.10.3		loop antennas to measure the magnetic field	217
4.11		on of lightn		219
	4.11.1		g flash counters	220
	4.11.2	_	direction finding	221
	4.11.3		arrival technique: VLF range	222
	4.11.4		arrival technique: VHF range	222
	4.11.5		io interferometry	223
4.12	Referen	ces		225
Com	putation	of electron	nagnetic fields from lightning discharge	241
Rajee	v Thottap	pillil		
5.1	Electros	statics and r	nagnetostatics	241
	5.1.1	Electrost	atic field from a dipole	241
	5.1.2		static field from a line current	243
5.2		rying fields	s from lightning	244
	5.2.1	Introduct		244
		5.2.1.1	Three approaches for calculating the electric	
			fields	245
5.3	Treatme	ent of retard	lation effects	246
5.4	Fields in	n terms of c	current (the Lorentz condition approach)	248

	5.5			urrent and charge (the continuity equation	250
		approac			252
	5.6		-	electrostatic, induction and radiation field	
		compo			255
	5.7		ntinuity equa		258
	5.8			pparent charge distribution	261
		5.8.1	Theory		262
			5.8.1.1	General	262
			5.8.1.2	Relation between apparent charge density	
				and retarded current	263
			5.8.1.3	General expressions for differential electric	
				and magnetic fields	264
		5.8.2		roke electric and magnetic fields	266
			5.8.2.1	Exact expressions	266
			5.8.2.2	Numerical illustration	268
			5.8.2.3	Expression for electric field at an	
				elevation	268
			5.8.2.4	The moment approximation	270
		5.8.3	Leader el	ectric fields	271
			5.8.3.1	Exact expressions	271
			5.8.3.2	Electrostatic approximation	272
	5.9	Calcula	ition of field	s from lightning return stroke	273
		5.9.1	Bruce-G	olde model (BG)	274
		5.9.2	Travellin	g current source model (TCS)	274
		5.9.3	Diendorf	er–Uman model (DU)	274
		5.9.4	Transmis	sion line model (TL)	275
		5.9.5	Modified	transmission line model, linear (MTLL)	275
		5.9.6	Modified	transmission line model, exponential	
			(MTLE)		276
	5.10	Transm	ission line n	nodel of the return stroke	276
	5.11	Referen	nces		277
6	Math	ematica	l modelling	of return strokes	281
•		n Coora		of female services	-01
	6.1	Introdu	,		281
	6.2		thermodyna	mic models	283
	6.3			or LCR models	287
	6.4			miphysical models	295
	0.1	6.4.1	_	propagation models (CP models)	295
		0. 1.1	6.4.1.1	Norinder	296
			6.4.1.2	Bruce and Golde	297
			6.4.1.3	Dennis and Pierce	298
			6.4.1.4	Uman and McLain – the transmission line	470
			O.T. 1.T	model (TLM)	300
					.,,,,,,,,,,,

		6.4.1.5	Nucci et al. [36] and Rakov and Dulzon	
			[37] – modified transmission line models	202
	6.4.2	Current	(MTL) cneration models (CG models)	302
	0.4.2	6.4.2.1	The relationship between the transmission	307
		0.4.2.1	-	207
		6.4.2.2	lines and current generation models Mathematical derivation of return stroke	307
		0.4.2.2		
			current using the principles of current	200
		6122	generation models	308
		6.4.2.3 6.4.2.4	Wagner	311
			Lin et al.	312
		6.4.2.5	Heidler – travelling current source model	312
		6.4.2.6	Cooray and collaborators	315
	_	6.4.2.7	Diendorfer and Uman	350
6.5		stroke speed		351
	6.5.1		n and Wagner	353
	6.5.2	Rai		355
	6.5.3	Cooray		356
6.6			versus current generation models	361
	6.6.1	The coror		361
	6.6.2		tical expressions for the equivalent corona	
			or CG representation of three commonly	
		applied C		362
		6.6.2.1	Transmission line model	362
		6.6.2.2	MTLE model	363
		6.6.2.3	MTLL model	363
6.7	Remote	sensing and	l return stroke models	363
6.8	The futi	are of return	stroke models	364
6.9	Append	lix: analytica	al expression for the velocity profile as	
	predicte	ed by the sub	osequent return stroke model 1	365
6.10	Referen	ces		366
The e	ffects of	propagatio	n on electric radiation fields	369
Verno	n Cooray	,		
7.1	Introduc	etion		369
7.2	Theory			370
	7.2.1	Basic equ	ations	370
	7.2.2	Homogen	eous ground	372
		7.2.2.1	A simplified equation to calculate	
			propagation effects	372
		7.2.2.2	Experimental validation of the simplified	
			equation	373
	7.2.3	Stratified	=	374
	7.2.4		on along a mixed path of two sections	378

		7.2.5	Propagation across a finitely conducting rough ocean	
		B 1:	surface	379
	7.3	Results		380
		7.3.1	Mathematical procedure	380
		7.3.2	Homogeneous ground	381
			7.3.2.1 Propagation effects on radiation fields of the	
			first return strokes of negative and positive	
			lightning flashes 7.3.2.2 The effect of propagation on the time	381
			derivative of the radiation fields of negative return strokes	205
		7.3.3		385
		7.3.4	The effect of propagation on triggered return strokes The effect of propagation on electromagnetic fields	390
		1.3.7	generated by cloud flashes	204
		7.3.5	The effect of a sea-land boundary on propagation	394
		7.3.6	The effect of a sea-tailed boundary on propagation The effect of a rough ocean on propagation	398
		7.3.7	Propagation over stratified ground	402
	7.4		ng the lightning-generated electrornagnetic fields required	405
	7.4	for the e	evaluation of induced voltages in power distribution	
		systems		408
		7.4.1	The Cooray-Rubinstein approximation	415
		7.4.2	Electromagnetic fields underground	415
	7.5		research work	420
	7.6	Referen		420
				420
8	Inter	action of	electromagnetic fields generated by lightning with	
			rical networks	425
	Carlo	Alberto i	Nucci and Farhad Rachidi	
	8.1	Introduc	etion	425
	8.2	Field-to	-transmission line coupling models	426
		8.2.1	Use of the transmission line theory	426
		8.2.2	Case of single wire line above a perfectly conducting	
			ground	427
		8.2.3	Agrawal, Price, and Gurhaxani model	428
		8.2.4	Taylor Satterwhite, and Harrison model	429
		8.2.5	Rachidi model	429
		8.2.6	Contribution of the different components of the	
			electromagnetic field in the coupling mechanism	430
		8.2.7	Other models	433
		8.2.8	Inclusion of losses	434
		8.2.9	Discussion on the relative importance of different	
			transmission line parameters when calculating	
			lightning-induced voltages	436
		8.2.10	Case of multiconductor lines	438

	8.2.11		nain representation of coupling equations	440
	8.2.12	-	ntal validation of the field-to-transmission line	
		coupling		441
		8.2.12.1	Natural and triggered lightning	
			experiments	442
		8.2.12.2	EMP simulators	443
		8.2.12.3	e e	443
8.3	_	_	voltages on overhead power lines	444
	8.3.1		roke current model, computation of the incident	
			gnetic field, and coupling model	444
	8.3.2		m of voltage induction by a nearby lightning	
			oke on an overhead line	446
	8.3.3		ry remarks on the influence of the ground	
			on the induced voltages	449
	8.3.4	Sensitivit	y analysis and discussion	451
		8.3.4.1	Channel base current and return stroke	
			speed	452
		8.3.4.2	Ground electrical parameters	453
		8.3.4.3	Line configuration and stroke location	453
		8.3.4.4	Influence of channel base current: stroke	
			location A	453
		8.3.4.5	Influence of channel base current: stroke	
			location B	456
		8.3.4.6	Influence of line height	459
		8.3.4.7	Multiconductor lines	459
		8.3.4.8	Influence of line length	460
		8.3.4.9	Influence of the position of the stroke	
			location with respect to the line and	
			observation point	461
		8.3.4.10	Influence of return stroke speed	462
		8.3.4.11	Influence of distance of the stroke location to	
			the line	462
		8.3.4.12	Comparison with the results obtained using	
			the simplified Rusck formula	462
	8.3.5		of additional factors (downward leader,	
		corona, c	hannel inclination and tortuosity)	465
		8.3.5.1	Downward leader electromagnetic field	
			change	465
		8.3.5.2	Effect of corona	466
		8.3.5.3	Channel inclination and tortuosity	468
	8.3.6		on to realistic cases: use of the	
		LIOV-EN	MTP	469
8.4	Referer	ices		471

9	_	ning and	I EMC	479
	9.1	Introduc	etion	479
	9.2		verview of EMC history	480
	9.3		ng as a disturbance source	481
	9.4		f coupling between lightning and circuits or	101
	···	installat		482
		9.4.1	Coupling modes	482
		9.4.2	Effects due to conductive coupling	483
		9.4.3	Calculation of the average number of lightning strokes	705
		<i>7.11.5</i>	per year on a overhead line	484
		9.4.4	Effects due to electromagnetic field coupling	485
		2.1.1	9.4.4.1 Direct strokes on a building	485
			9.4.4.2 Lightning stroke near a building	487
	9.5	Typical	EMC problems due to lightning	488
	7.5	9.5.1	Lightning effects in power networks	488
		9.5.2	Lightning effects on power network substation	400
		7.5.2	equipment	490
		9.5.3	Lightning effects on telecommunication networks	492
		9.5.4	Lightning effects on low-voltage power networks	492
		9.5.5	Lightning effects on aircrafts	493
	9.6		EMC lightning protection parameters	495
	9.0	9.6.1	General	495
		9.6.2	Peak current	497
		9.6.3	Peak current derivative	497
		9.6.4	Peak rate of change of voltage	497
		9.6.5	Total charge	498
		9.6.6	The action integral: integral $i^2 \times dt$	498
		9.6.7	Time to half value of the current	498
		9.6.8	Conclusions on LEMP and fast transients protection	490
		9.0.6	<u>.</u>	498
	9.7	Cnaoifia	comparison	490 499
	9.1	9.7.1	EMC lightning protection concepts General EMC protection concepts	499
		9.7.1		500
		9.7.2	Suppressors Shielded ages	
	0.0	9.7.5 Referen	Shielded cages	501
	9.8	Keieren	ces	501
10	Princ	iples of p	protection of structures against lightning	503
		Mazzetti		
	10.1		ters of lightning current	504
	10.2		cation of structures	504
	10.3	-	e due to lightning	505
		10.3.1	Effects of lightning	505
		10.3.2	Causes and types of damage	506
		10.3.3	Types of loss	507

10.4	Risk			507
	10.4.1	Number of	flashes	508
	10.4.2	Probability	of damage	509
	10.4.3	Amount of	loss	509
	10.4.4	Risk comp	onents	510
	10.4.5	Tolerable v	value of risk	511
		10.4.5.1	Procedure for selection of protection	
			measures	511
		10.4.5.2	Protection measures	512
10.5	Basic crit	teria of prot	ection	512
	10.5.1	Protection life hazard	of structures against physical damages and	512
	10.5.2	Protection	of electrical and electronic systems within the	
			gainst lightning electromagnetic	
		impulse (L		513
	10.5.3		of services entering the structure	515
10.6	Protection	n by means		516
10.7	Main feat	tures of ligh	tning protection system (LPS)	517
	10.7.1	-	ghtning protection system	517
	10.7.2		g of the air termination system	518
		10.7.2.1	Principles of positioning	518
		10.7.2.2	Types of air termination system	519
	10.7.3	Down cone	ductor systems	521
	10.7.4	Protection	measures against touch and step voltages	522
	10.7.5	Earth term	ination system	523
		10.7.5.1	Principles of design	523
		10.7.5.2	Earthing arrangement in general	
			conditions	526
	10.7.6		and dimensions	529
10.8	Internal 1	ightning pro	otection system	530
	10.8.1	General		530
	10.8.2		equipotential bonding	530
	10.8.3	Electrical i	insulation of the external LPS	531
10.9	Shielding			532
			pection of LPS	532
10.11	Annex A	: parameter	s of lightning current	532
		Lightning	flashes to earth	532
	10.11.2		current parameters	534
	10.11.3	Maximum	lightning current parameters used for	
		dimension	ing lightning protection systems	539
		10.11.3.1	First short stroke and long stroke	540
		10.11.3.2	Subsequent short stroke	543
	10.11.4		lightning current parameters used for	
		interceptio	on efficiency of air terminals	543

					Contents	xix
	10.12	Annex B: models for the evaluation of lightning exposure of				
				ception probability of air terminals	• • •	543
		10.12.1		ometric model		543
		10.12.2	_	electrogeometric model		544
		10.12.3	-	ed leader inception model		545
		10.12.4		ogression model		545
	10.13	Reference				545
11	Flectr	rical asne	ets of light	ning strika ta humans		549
11	Electrical aspects of lightning strike to humans Chris Andrews					343
	11.1	Introduc	tion			549
	11.2 Strike mechanisms					549
		Experim		551		
	11.4	Importar		552		
	11.5	Proposed shock mechanism				552
	11.6	Results				553
	1110	11.6.1	In the field	d strike		553
			11.6.1.1			553
			11.6.1.2	Earth resistance component		553
			11.6.1.3			553
			11.6.1.4			556
			11.6.1.5	Heating considerations		557
		11.6.2		ated shock		557
		11.6.3		e-mediated strike		559
	11.7					561
	11.8	Conclusi	~ ~			563
	11.9	Reference	ces			563
		Index				565