V. Ya. Neiland V. V. Bogolepov G. N. Dudin I. I. Lipatov

Asymptotic Theory of Supersonic Viscous Gas Flows

Contents

Pref:	ace		XV
Chaj	oter 1	Flow in the Regions of Free Interaction Between a	
		Supersonic Flow and a Boundary Layer	1
1.1	Deriva	ation of the equations and boundary conditions	2
	1.1.1	Estimates of the scales and characteristic values of the functions in	
		disturbed flow regions	2
	1.1.2	Asymptotic representations, equations, and boundary conditions	4
1.2	Flow	near the separation point of the laminar boundary layer in a	
		conic flow	9
		Formulation of the problem and similarity law	9
	1.2.2	Asymptotic behavior of the solution at minus infinity and	
		results of the numerical solution of the problem	11
	1.2.3	Results of calculations and comparison with experimental data	11
	1.2.4	Note on the nature of upstream disturbance propagation in the	
	_	interaction between the boundary layer and the outer flow	15
1.3		ation far from the leading edge	18
1.4	Separa	ation from a leading edge	22
Chap	oter 2	Other Types of Flows Described by Free Interaction Theory	25
2.1	Laminar boundary layer separation in a supersonic flow under conditions of		
		in friction	25
	2.1.1	Formulation of the problem. Estimation of the scales and	
		characteristic values of the flow functions in the wall region	25
	2.1.2	Equations and boundary conditions	27
	2.1.3	Solution of the linear boundary value problem	30
2.2	Expan	sion flow	33
	2.2.1	Asymptotic behavior of the solution, as $\xi \to 0$ and $\xi \to \infty$	34
	2.2.2	Results of calculations	35
2.3		types of flows described by free interaction equations	37
	2.3.1	Equations and boundary conditions for the case of a curvilinear	
		body contour	39
	2.3.2	Flow inside a corner somewhat smaller than π and region of	
		weak shock incidence on a boundary layer	40

	2.3.3	Formulation of other problems for flows with free interaction	42			
	2.3.4	Integration of the equations	44			
2.4		nation of boundary layer separation by means of slot suction	45			
	2.4.1	Formulation of the problem	46			
	2.4.2	Derivation of the equations and boundary conditions for regions 1				
	2 4 0	and 2	48			
	2.4.3	Solutions for nonlinear inviscid flow regions for $\Delta x \gg \varepsilon$	52			
	2.4.4	Solutions for finite-length flaps and bodies with a bend in the contour for $1 \gg \theta \gg \varepsilon^{1/2}$	55			
	2.4.5	Flow past a flap deflected by an angle $\theta \sim \varepsilon^{1/2}$	56 56			
	2.4.6	Flow patterns in the laminar boundary layer for finite flap	50			
	2.4.0	deflection angles	57			
Cha	pter 3	Viscous Gas Flows in Regions with Developed Locally Inviscid Zones and High Local Pressure Gradients	61			
		<u> </u>	01			
3.1		plation of the problem of the expansion flow near a corner point on a				
	-	in supersonic flow	61			
	3.1.1	Asymptotic expansions	63			
	3.1.2	Upstream disturbance decay	66			
	3.1.3	Boundary conditions for the viscous sublayer 32	68			
	3.1.4	Bringing the equations for region 33 into the standard form	70			
	3.1.5	Solution of the problem in the region of locally inviscid flow 22	71			
3.2	Flow ahead of the base section of a body					
	3.2.1	Formulation of the problem and characteristic flow regions	75			
	3.2.2	Solution of the problem and comparison with experimental data	76			
3.3		chment of a supersonic flow to the body surface	77			
	3.3.1	Formulation of the problem and main flow regions	79			
	3.3.2	Nature of the locally inviscid flow in region 22	80			
	3.3.3	Solution for the problem of the locally inviscid flow in region 22	82			
	3.3.4	Viscous flow regions	86			
	3.3.5	Solution for the region with maximum friction and heat flux values	93			
	3.3.6	Discussion of the Chapman–Korst criterion	95			
3.4		Problems with discontinuous boundary conditions describing laminar				
	_	Reynolds-number flows	101			
	3.4.1	Structure of disturbed flow regions	102			
	3.4.2	Analysis of the regimes described by free interaction theory	107			
	3.4.3	Boundary value problem for the case $\varepsilon^{1/4} \ll u_w \ll 1$ in the				
		vicinity of the point of the beginning of the motion of the				
		surface (steady case)	109			
	3.4.4	Numerical solution of the problem	111			
	3.4.5	Analysis of nonlinear time-dependent flow patterns	113			
	3.4.6	Examples of numerical solutions of nonlinear time-dependent				
		problems	116			

3.5	Structure of chemically nonequilibrium flows at jumpwise variation			
	of the	temperature and catalytic properties of the surface	120	
	3.5.1	Formulation of the problem	121	
	3.5.2	Parameter scales, equations, and boundary conditions	123	
	3.5.3	Analysis of the flow in region IV near the point of jumpwise		
		variation of the temperature and catalytic properties of the		
		surface	129	
	3.5.4	Results of numerical calculations	132	
Cha	pter 4	Flows Under Conditions of the Interaction Between the Boundary		
		Layer and the Outer Flow Along the Entire Body Length	137	
4.1	Regin	ne of weak interaction with the outer flow	137	
4.2		rate and strong interactions in a hypersonic flow	142	
	4.2.1	Flow nature in the locations of rapid variation of the boundary		
		conditions	142	
	4.2.2	Equations and boundary conditions for the flat-plate flows in		
		the presence of moderate and strong interactions	144	
	4.2.3	Study of the nature of the nonuniqueness of the boundary		
		value problem	147	
	4.2.4	Results of calculations and comparison of the similarity law		
		with the experimental data	152	
4.3	Theor	y of hypersonic flow/boundary layer interaction for		
	two-d	imensional separated flows	157	
	4.3.1	Formulation of the problem, equations, and boundary conditions	157	
	4.3.2	Similarity criteria	162	
4.4	Propa	gation of disturbances at strong distributed gas injection through		
	the bo	ody surface to a supersonic flow	163	
	4.4.1	Formulation of the problem and derivation of the equations	163	
	4.4.2	Analysis of the solutions for region 1	165	
	4.4.3	Flow near the base section	167	
	4.4.4	Concluding remarks	170	
	4.4.5	Integration of Eqs. (4.36)	172	
4.5	Detac	hment of a laminar boundary-layer	173	
	4.5.1	Formulation of the problem, equations, and boundary conditions	174	
	4.5.2	Results of the solution	177	
4.6		njection into a hypersonic flow	179	
	4.6.1	Formulation of the problem	179	
	4.6.2	Equations and boundary conditions	179	
	4.6.3	Self-similar solutions	182	
	4.6.4	Analysis of the $N = O(1)$ regime	186	
	4.6.5	Dependence of the solution on the base pressure difference	188	
	4.6.6	•	400	
		surface	190	

4.7	Gas ir 4.7.1 4.7.2	rjection into a hypersonic flow (moderate injection) Formulation of the problem and boundary conditions Results of the solution	190 192 194
Cha	ipter 5	Three-Dimensional Hypersonic Viscous Flows	199
5.1	Visco	us flow over a low-aspect-ratio wing in the weak interaction	
		e (longitudinal–transverse interaction)	199
	5.1.1	Special features of the formulation of the boundary value problem	199
	5.1.2	Original relations and estimates	200
	5.1.3	Equations and boundary conditions	201
	5.1.4	Eigenvalue problem	203
	5.1.5	Approximate calculation of the flow past a wing in the	
		self-similar case	205
	5.1.6	Finite-difference method for solving the problem	207
	5.1.7	Numerical results	213
5.2		tion of secondary flows on thin semi-infinite wings	215
	5.2.1	Estimation of secondary flow parameters in boundary layers on	
		thin wings	215
	5.2.2	Thin semi-infinite wing at zero incidence	219
<i>5</i> 2	5.2.3	Plane cross-section law	223
5.3		ower-law wings in weak viscous-inviscid interaction	224
	5.3.1	Formulation of the boundary value problem	225
	5.3.2	On the nature of the pressure distribution	228
	5.3.3	Certain features of the solution of boundary value problems	228
	5.3.4	Characteristics of the self-similar solution	232
5.4	5.3.5	Approximate solution of the problem for delta wings	234
5.4	5.4.1	y viscous interaction regime on delta and swept wings	236
	5.4.2	Formulation of the problem Equations and boundary conditions	236
	5.4.3	Strong viscous interaction on a delta wing	237
	5.4.4	Solution in the vicinity of the leading edge	239
	5.4.5	Strong viscous interaction on a swept plate	240
	5.4.6	Propagation of disturbances from the trailing edge of a	241
	2.1.0	swept plate	242
	5.4.7	Delta wing	244
5.5		ctive features of the symmetric flow over a thin triangular plate	444
	in the strong interaction regime		
	5.5.1	Equations and boundary conditions	246 246
5.6		length wings in the strong viscous interaction regime	252
	5.6.1	Mathematical formulation of the problem	252
	5.6.2	Aerodynamic characteristics of finite-length wings at zero	202
		incidence	255
	5.6.3	Wings of finite length at an angle of attack	259

5.7	Wings 5.7.1	of finite length in the moderate viscous interaction regime Mathematical formulation of the problem	264 265	
	5.7.2	Aerodynamic characteristics of a wing at zero incidence	267	
	5.7.3	Angle-of-attack effect of the aerodynamic characteristics	270	
	5.7.5	Tingle of analytical of the actorynamic enductoristics	270	
Cha	pter 6	Supercritical and Transcritical Interaction Regimes:		
		Two-Dimensional Flows	277	
6.1	Distin	ctive features of boundary layer separation on a cold body and its		
	interac	ction with a hypersonic flow	278	
	6.1.1	Formulation of the problem	278	
	6.1.2	Starting estimates	279	
	6.1.3	Solution for the hypersonic regime of weak viscous interaction	281	
	6.1.4	Discussion of the results	283	
	6.1.5	Supercritical regime of incipient separation	286	
6.2	Distin	ctive features of interaction and separation of a transcritical		
	bound	ary layer	289	
	6.2.1	Equations and boundary conditions	289	
	6.2.2	Flow in region 3	293	
	6.2.3	Classification of flow regimes	293	
	6.2.4	Properties of transcritical flows corresponding to curve AB	298	
	6.2.5	Properties of integral curves	300	
6.3	Study	of time-dependent processes of transcritical interaction between		
	the lar	ninar boundary layer and a hypersonic flow	304	
	6.3.1	Estimates of the scales	304	
	6.3.2	Formulation and solution of the boundary value problem	306	
	6.3.3	Conclusion	313	
6.4	Analy	sis of the boundary layer flow near the trailing edge of a flat plate and		
	in its v	wake in the strong hypersonic interaction regime	313	
	6.4.1	Formulation of the problem	313	
	6.4.2	Investigation of the plate wake flow in the vicinity of the point		
		of subcritical-to-supercritical transition	315	
	6.4.3	Investigation of the flow in the vicinity of the transition point		
		for a near-supercritical regime	317	
	6.4.4	Analysis of the flow in the vicinity of the trailing edge of a flat		
		plate in the subcritical and supercritical regimes	320	
	6.4.5	Analysis of the flow in the vicinity of the trailing edge of a flat		
		plate in the transcritical interaction regime	322	
6.5	Globa	Global solution for the hypersonic flow over a finite-length plate		
	with a	ccount for the wake flow	328	
	6.5.1	Formulation of the problem	328	
	6.5.2	Transformation of variables	330	
	6.5.3	Results of calculations	330	

6.6		g interaction of the boundary layer with a hypersonic flow	222
		local disturbances of boundary conditions	332
	6.6.1	Formulation of the problem	332
	6.6.2	Estimates of the orders of the flow parameters	333
	6.6.3	Flow regime with finite pressure disturbances	336
	6.6.4	Flow patterns with small pressure differences	341
	6.6.5	Concluding remarks	343
Cha	pter 7	Three-Dimensional Hypersonic Viscous Flows with	
		Supercritical and Subcritical Regions	345
7.1	Strong	g interaction between a hypersonic flow and the boundary layer	
	on a c	old delta wing	345
	7.1.1	Equations and boundary conditions	345
	7.1.2	Solution near the leading edge	347
	7.1.3		349
	7.1.4	Analysis of the solution in the vicinity of the critical section	350
	7.1.5	Aerodynamic characteristics of delta wings	357
	7.1.6	Characteristics for supercritical boundary layers and wakes for an	
		arbitrary wing planform	359
7.2	Propa	gation of disturbances in three-dimensional time-dependent	
	bound	lary layers	363
	7.2.1	Formulation of the problem	363
	7.2.2	Determining subcharacteristic surfaces in time-dependent	
		three-dimensional flows	365
	7.2.3	Results of the numerical analysis	368
	7.2.4	Two-dimensional flows	370
	7.2.5	Three-dimensional boundary layer	372
7.3	Supercritical regimes of hypersonic flow over a yawed planar delta wing		372
	7.3.1	Equations and boundary conditions	373
	7.3.2		375
7.4	Exist	ence of self-similar solutions in the supercritical region on a	
	nonpl	anar delta wing in hypersonic flow	378
	7.4.1	Equations and boundary conditions	378
	7.4.2	Self-similar solutions	380
	7.4.3		382
7.5	Effect of strong cooling of the surface on the hypersonic viscous flow		
	over a	a nonplanar delta wing	386
	7.5.1	Equations and boundary conditions	387
	7.5.2		389
7.6	Self-similar flows with gas injection from the triangular plate surface		
		hypersonic flow	393
	7.6.1	1	394
	7.6.2		397
	7.6.3	Results of calculations	398

7.7	Mass transfer on a planar delta wing in the presence of a supercritical flow			
	regior	in the boundary layer	403	
	7.7.1	Equations and boundary conditions	404	
	7.7.2	Results of calculations	404	
7.8	Mass	transfer on a nonplanar delta wing	409	
	7.8.1	Equations and boundary conditions	409	
	7.8.2	Results of calculations	411	
7.9	Using	the Newtonian passage to limit for studying the flow over a		
	delta	wing	417	
	7.9.1	Estimates of the flow parameters	418	
	7.9.2	Self-similar variables	424	
	7.9.3	Conditions of supercritical-to-m-subcritical flow regime		
		transition	427	
Cha	pter 8	Boundary Layer Flow Over Roughnesses at Body Surfaces	433	
8.1	Flow	over two-dimensional roughnesses	433	
	8.1.1	General formulation of the problem and classification of flow		
		regimes	433	
	8.1.2	Flow over "short" roughnesses embedded in the wall region of the		
		undisturbed boundary layer	435	
	8.1.3	Flow over "short" roughnesses with the formation of locally		
		inviscid disturbed flow regions	439	
	8.1.4	Flow over roughnesses with a characteristic length equal in the		
		order to the boundary layer thickness	446	
	8.1.5	Flow over "long" roughnesses whose length is greater than the		
		boundary layer thickness	451	
	8.1.6	Classification diagram of the regimes of the flow over small		
		two-dimensional roughnesses	456	
	8.1.7	Examples of solutions for the flow over two-dimensional		
		roughnesses	457	
	8.1.8	Classification of the regimes of flow over roughness on a cold		
		surface	465	
8.2		nes of the flow over three-dimensional roughnesses	475	
	8.2.1	Flow over fairly narrow roughness of the type of a hole or a hill	475	
	8.2.2	Flow over streamwise-elongated narrow roughnesses	481	
	8.2.3	Compensation regime of the flow over roughnesses	486	
8.3		rical investigation of the three-dimensional flow over roughnesses		
		compensation interaction regime	497	
	8.3.1	Formulation of the problem and estimates for the scales	498	
	8.3.2	Boundary value problem	501	
	8.3.3	Numerical solution	503	
Bibl	iograpl	ny	509	
Inde	Index			