

Editors Roy Langton, Chuck Clark, Martin Hewitt and Lonnie Richards

Aircraft Fuel Systems

WILEY

Aerospace Series

Contents

Acknowledgements		xiii	
L	List of Acronyms		
Series Preface			
1	Introduction	1	
	1.1 Review of Fuel Systems Issues	2	
	1.1.1 Basic Fuel System Characteristics and Functions	2	
	1.1.2 Fuel Quantity Measurement	6	
	1.1.3 Fuel Properties and Environmental Issues	8	
	1.2 The Fuel System Design and Development Process	11	
	1.2.1 Program Management	12	
	1.2.2 Design and Development Support Tools	13	
	1.2.3 Functional Maturity	14	
	1.2.4 Testing and Certification	14	
	1.3 Fuel System Examples and Future Technologies	15	
	1.4 Terminology	15	
2	Fuel System Design Drivers	19	
	2.1 Design Drivers	21	
	2.1.1 Intended Aircraft Mission	21	
	2.1.2 Dispatch Reliability Goals	21	
	2.1.3 Fuel Tank Boundaries and Tank Location Issues	22	
	2.1.4 Measurement and Management System Functional Requirements	26	
	2.1.5 Electrical Power Management Architecture and Capacity	26	
	2.2 Identification and Mitigation of Safety Risks	27	
	2.2.1 Fuel System Risks	28	
3	Fuel Storage	31	
	3.1 Tank Geometry and Location Issues for Commercial Aircraft	32	
	3.2 Operational Considerations	36	

3.2.1 CG Shift due to Fuel Storage	36
3.2.2 Unusable Fuel	39
3.3 Fuel Tank Venting	41
3.3.1 Vent System Sizing	45
3.4 Military Aircraft Fuel Storage Issues	45
3.4.1 Drop Tanks and Conformal Tanks	48
3.4.2 Closed Vent Systems	48
3.5 Maintenance Considerations	49
3.5.1 Access	49
3.5.2 Contamination	50
4 Fuel System Functions of Commercial Aircraft	53
4.1 Refueling and Defueling	54
4.1.1 Pressure Refueling	54
4.1.2 Defueling	58
4.2 Engine and APU Feed	59
4.2.1 Feed Tank and Engine Location Effects	59
4.2.2 Feed Pumping Systems	60
4.2.3 Feed Tank Scavenging	65
4.2.4 Negative g Considerations	65
4.2.5 Crossfeed	66
4.2.6 Integrated Feed System Solution	67
4.2.7 Feed System Design-Practices	69
4.3 Fuel Transfer	70
4.3.1 Fuel Burn Scheduling	70
4.3.2 Wing Load Alleviation	72
4.3.3 Fuel Transfer System Design Requirements	72
4.4 Fuel Jettison	73
4.4.1 Jettison System Example	74
4.5 Fuel Quantity Gauging	76
4.5.1 Architectural Considerations	78
4.5.2 Fuel Load Planning	82
4.5.3 Leak Detection	83
4.6 Fuel Management and Control	84
4.6.1 Refuel Distribution	86
4.6.2 In-flight Fuel Management	88
4.6.3 Fuel Management System Architecture Considerations	91
4.6.4 Flight Deck Displays, Warnings and Advisories	91
4.7 Ancillary Systems	93
5 Fuel System Functions of Military Aircraft and Helicopters	97
5.1 Refueling and Defueling	98
5.1.1 Pressure Refueling	98
5.1.2 Defueling	102
5.2 Engine and APU Feed	103
5.3 Fuel Transfer	104

	5.4	Aerial Refueling	106
		5.4.1 Design and Operational Issues Associated with Aerial Refueling	108
		5.4.2 Flying Boom System	109
		5.4.3 Probe and Drogue Systems	111
	5.5	Fuel Measurement and Management Systems in Military Applications	112
		5.5.1 KC-135 Aerial Refueling Tanker Fuel Measurement and Management	
		System	112
	5.6	Helicopter Fuel Systems	116
6	Flu	id Mechanical Equipment	119
	6.1	Ground Refueling and Defueling Equipment	120
		6.1.1 Refueling and Defueling Adaptors	120
		6.1.2 Refuel Shut-off Valves	121
		6.1.3 Fuel Transfer Valves	131
	6.2	Fuel Tank Venting and Pressurization Equipment	133
	6.3	Aerial Refueling Equipment	137
		6.3.1 The Flying Boom System Equipment	137
		6.3.2 The Probe and Drogue System Equipment	139
	6.4	Equipment Sizing	142
		6.4.1 Valve Configuration and Pressure Drop Estimation	142
	6.5	Fuel Pumps	143
		6.5.1 Ejector Pumps	143
		6.5.2 Motor-driven pumps	145
7	Fue	el Measurement and Management Equipment	157
•		Fuel Gauging Sensor Technology	158
		7.1.1 Capacitance Gauging	158
		7.1.2 Ultrasonic Gauging	177
		7.1.3 Density Sensor Technology	186
		7.1.4 Level Sensing	191
		7.1.5 Secondary Gauging	193
	7.2	Harnesses	195
		7.2.1 In-Tank Harnesses	195
		7.2.2 Out-Tank Harnesses	197
	7.3	Avionics Equipment	197
		7.3.1 Requirements	197
		7.3.2 Data Concentration	198
		7.3.3 Avionics Integration	198
		7.3.4 Integration of Fuel Management	199
		7.3.5 Fuel Quantity Display	200
8	Fu	el Properties	203
		The Refinement Process	203
	8.2	Fuel Specification Properties of Interest	205
		8.2.1 Distillation Process Limits	205
		8.2.2 Flashpoint	205

8.2.3 Vapor Pressure	206
8.2.4 Viscosity	207
8.2.5 Freeze Point	208
8.2.6 Density	208
8.2.7 Thermal Stability	209
8.3 Operational Considerations	209
8.3.1 Fuel Temperature Considerations – Feed and Transfer	209
8.3.2 Fuel Property Issues Associated with Quantity Gauging	210
9 Intrinsic Safety, Electro Magnetics and Electrostatics	215
9.1 Intrinsic Safety	216
9.1.1 Threats from Energy Storage within the Signal	
Conditioning Avionics	217
9.2 Lightning	217
9.2.1 Threats from Induced Transients in Electronic Equipment	218
9.2.2 Protecting the Signal Conditioning Avionics from Lightning	221
9.3 EMI/HIRF	221
9.3.1 Threats from HIRF Energy Transfer	221
9.3.2 Protecting the Signal Conditioning Avionics from HIRF	222
9.3.3 Electrostatics	222
10 Fuel Tank Inerting	225
10.1 Early Military Inerting Systems	225
10.2 Current Technology Inerting Systems	229
10.2.1 Military Aircraft Inerting Systems	229
10.2.2 Commercial Aircraft Inerting Systems	231
10.3 Design Considerations for Open Vent Systems	235
10.4 Operational Issues with Permeable Membrane Inerting Systems	236
10.4.1 Fiber In-service Performance	236
10.4.2 Separator Performance Measurement	237
10.4.3 NEA Distribution	237
11 Design Development and Certification	239
11.1 Evolution of the Design and Development Process	239
11.2 System Design and Development – a Disciplined Methodology	243
11.2.1 The 'V' Diagram	245
11.2.2 Software Development	246
11.3 Program Management	248
11.3.1 Supplier Team Organization	249
11.3.2 Risk Management	250
11.3.3 Management Activities	252
11.4 Maturity Management	254
11.5 Installation Considerations	256
11.6 Modeling and Simulation	259
11.7 Certification	263
11.7.1 Certification of Commercial Aircraft Fuel Systems	263
11.7.2 Flight Test Considerations	264
11.7.3 Certification of Military Aircraft Fuel Systems	266

11.8 Fuel System Icing Tests	268	
11.8.1 Icing Test Rigs	269	
11.8.2 Fuel Conditioning	269	
12 Fuel System Design Examples	271	
12.1 The Bombardier Global Express TM	272	
12.1.1 Fuel Storage	273	
12.1.2 Fluid Mechanical System Design	275	
12.1.3 Fuel Measurement and Management	277	
12.1.4 Flight Deck Equipment	278	
12.1.5 Operational Considerations	278	
12.2 Embraer 170/190 Regional Jet	280	
12,2,1 Fuel Storage and Venting	280	
12.2.2 The Refuel and Defuel System	282	
12.2.3 In-flight Operation	283	
12.2.4 System Architecture	284	
12.2.5 Fuel Quantity Gauging	286	
12.2.6 In-service Maturity	287	
12.3 The Boeing 777 Wide-Bodied Airliner	288	
12.3.1 Fuel Storage	289	
12.3.2 Fluid-Mechanical System	292	
12.3.3 Fuel Measurement and Management	296	
12.4 The Airbus A380 Wide-Bodied Airliner	301	
12.4.1 Fuel Storage	302	
12.4.2 Fluid-Mechanical System	303	
12.4.3 Fuel Measurement and Management System (FMMS)	309	
12.5 The Anglo-French Concorde	315	
12.5.1 Fuel System Operational and Thermal Design Issues	316	
12.5.2 Refuel System	317	
12.5.3 Fuel Transfer and Jettison	317	
12.5.4 Fuel Feed	321	
12.5.5 Vent System	324	
13 New and Future Technologies	327	
13.1 Fuel Measurement and Management	327	
13.1.1 Fuel Measurement	327	
13.1.2 Fuel Management	329	
13.2 Fluid Mechanical Equipment Technology	331	
13.2.1 Fuel Valve Technology	331	
13.2.2 Revolutionary Fuel Pump and Valve Technology	333	
13.3 Aerial Refueling Operations	338	
References		

Index

341