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Intro

Your brain on Design Patterns. Here you are trying to fearn something, while

here your brain is doing you a favor by making sure the learning doesn't stick. Your brain’s

thinking, "Better leave room for more important things, like which wild animals to avoid and
whether naked snowboarding is a bad idea.” So how do you trick your brain into thinking

that your life depends on knowing Design Patterns?
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Remember, knowing
concepts like abstraction,

inheritance, and polymorphism do
not make you o good object oriented
designer. A design guru thinks
about how to create flexible
designs that are maintainable

and that can cope with
change.

intro to Design Patterns

Welcome to Design Patterns

Someone has already solved your problems. in this chapter,
you'll iearn why (and how) you can exploit the wisdom and lessons learned by
other developers who've been down the same design problem road and survived
the trip. Before we're done, we'll look at the use and benefits of design patterns,
lock at some key OO design principles, and walk through an example of how one
pattern works, The best way to use patterns is to load your brain with them and
then recognize places in your designs and existing applications where you can

apply them. Instead of code reuse, with patterns you get experience reuse.
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the QObserver Tattern

Keeping your Objects in the Know

Don’t miss out when something interesting happens!

We've got a pattern that keeps your objects in the know when something they

might care about happens. Objects can even decide at runtime whether they
want to be kept informed. The Observer Pattern is one of the most heavily used
patterns in the JOK, and it's incredibly useful. Before we're done, we'll also lock
at one to many relationships and loose coupling {(yeah, that's right, we said

coupling). With Observer, you'll be the life of the Patterns Party.
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the Decorator Pattern

Decorating Objects

Just call this chapter “Design Eye for the Inheritance

Guy.” we'll re-examine the typical overuse of inheritance and you'll learn how

to decorate your classes at runtime using a form of object composition. Why?

Once you know the techniques of decorating, you'll be able to give your {or

someone else’s) objects new responsibilities without making any code changes

to the underlying classes.

—~

I used to think real men
subclassed everything. That was until
I learned the power of extension

at runtime, rather than at compile
time. Now look at me!

Welcome o Starbuzz Coflee
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Constructing a Drink Order with Decorators
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the Factorj Vattern

Baking with OO0 Goodness

Get ready to cook some loosely coupled OO designs.

There is more to making objects than just using the new operator. You'll learn

that instantiation is an activity that shouldn’t always be done in public and can
often lead to coupling problems. And you don’t want that, do you? Find out how

Factory Patterns can help save you from embarrasing dependencies.

When you see “new”, think “concrete” 110
Objectville Pizaa 112
Encapsulating object creation 114
Building a simple pizza factory 115
The Simple Factory defined 117
A Framework tor the pizza store 120
Allowing the subclasses to decide 121
Let’s make a PizzaStore 123
Declaring a factory method 125
Mezt the Factory Method Pattern 131
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Factory Method Pattern defined 134
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Looking at object dependencies 138
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Meanwhile, back at the PizzaStore... 144
Families of ingredients... 145
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Factory Mcthod and Abstract Factory compared {60
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the Singleton Pattern

One of a Kind Objects

The Singleton Pattern: your ticket to creating one-of-a-
kind objects, for which there is only one instance. you
might be happy to know that of all patterns, the Singleton is the simplest in terms
of its class diagram; in fact the diagram holds just a single class! But don't get
too comfortable; despite its simplicity from a class design perspective, we'l
encounter quite a few bumps and potholes in its implementation. So buckle

up—this one’s not as simple as it seems...
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the Command Fattern

Encapsulating Invocation

In this chapter we take encapsulation to a whole new
level: we’re going to encapsulate method invocation.
That's right, by encapsulating invocation we can crystallize pieces of computation
s0 that the object invoking the computation doesn't need to worry about how to do
things; it just uses our crystallized method to get it done. We can also do some
wickedly smart things with these encapsulated method invocations, like save

them away for logging or reuse them to implement undo in our code.
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the Adapter and Facade Patterns
Being Adaptive

In this chapter we’re going to attempt such impossible
feats as putting a square peg in a round hole. sound impossible?
Not when we have Design Patterns. Remember the Decorator Pattern? We

wrapped objects to give them new responsibilities. Now we're going to wrap some
objects with a different purpose: to make their interfaces ook like something they're
not. Why would we do that? So we can adapt a design expecting one interface to a

class that implements a different interface. That's not all, while we're at it we're going
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the Template Method Tattern

Encapsulating Algorithms

We’ve encapsulated object creation, method invocation,
complex interfaces, ducks, pizzas... what could be next?
We're going to get down to encapsulating pieces of algorithms so that subclasses can
hock themselves right into a computation anytime they want. We're even going to

learn about a design principle inspired by Hollywood.
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Swingin’ with Frames
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the Tterator and Composite Patterns

Well-Managed Collections

There are lots of ways to stuff objects into a coliection.

Putthem in an Array, a Stack, a List, a Map, take your pick. Each has its own

advantages and tradeoffs. But when your client wants to iterate over your objects,
are you going to show him your implementation? We certainly hope not! That just
wouldnt be professional. Don't worry—in this chapter you'll see how you can let
your clients iterate through your objects without ever seeing how you store your
objects. You're also going to learn how to create some super collections of objects
that can leap over some imprassive data structures in a single bound. You're also

going to learn a thing or two about object responsibility.
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the State Pattern

The State of Things

A little known fact: the Strategy and State Patterns were
twins separated at birth. As you know, the Strategy Pattern went on

to create a wildly successful business around interchangeable algorithms. State,

however, took the perhaps more noble path of helping objects learn to control their
behavior by changing their internal state. He's often overheard telling his object

clients, “just repeat after me, I'm good enough, I'm smart enough, and doggonit...

How do we implemeni state? 387
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State versus Strategy 411
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the Troxy Pattern

Controlling Object Access

Ever play good cop, bad cop? You're the good cop and you provide

all your services in a nice and friendly manner, but you don’t want everyone

asking you for services, so you have the bad cop controf access to you. That's

what proxies do: control and manage access. As you're going 1o see there are

fots of ways in which proxies stand in for the objects they proxy. Proxies have

been known to haui entire method calls over the Internet for their proxied objects:

they've also been known to patiently stand in the place for some pretty lazy

objects.
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Compound Tatterns

Patterns of Patterns

Who would have ever guessed that Patterns could work
together? vou've already witnessed the acrimonious Fireside Chats (and be

thankfui you dida't have to see the Pattern Death Match pages that the publisher
forced us to remove from the book so we could avoid having to use a Parent's
Advisory warning label), so who would have thought patterns can actually get along
well together? Believe it or not, some of the most powerful OO designs use several
patterns together. Get ready to take your pattern skills to the next level; it’s time for
Compound Patterns. Just be careful—your co-workers might kill you if you're struck

with Pattern Fever. Compound Parrerns
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Better Living with Tatterns

Patterns in the Real World

Ahhhh, now you're ready for a bright new world filled with
Design Patterns. But, before you go opening all thase new doors of opportunity

we noed to cover a few details that you'll encounter out in the real world—things get a
little more complex out there than they are here in Objectville. Come along, we've got

a nice guide to help you through the transition...

Your Objectville guide 378
Design Pattern defined 579
Fooking more closely at the Design Pattern definition 581
May the force he with you 582
Pattern catalogs 583
How to create patterns 586
56 you wanna be a Design Patterns writer? 287
Organizing Design Patterns 589
Thinking in patterns 394
Your mind on patterns 597
Don’t forget the power of the shared vocabulary 599
Top five ways to share your vocabulary 600
Cruisin® Objerwville with the Gang of Four 601
Your journcy has just begun... 602
Other Design Paitern resources 603
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Leaving Ohjectville... 609

e Ralpr
e

{MMM\ ﬁ&ng oij Fow

A
Jobn Yihesides

l Doch Banema



Appendix: Leftover Patterns

Not everyone can be the most popular. Aot has changed in

the last 10 years. Since Design Patterns: Elements of Reusable Object-Oriented

Software first came out, developers have applied these patterns thousands of times.

The patterns we summarize in this appendix are full-fledged, card-carrying, official
GoF patterns, but aren’t always used as often as the patterns we've explored so
far. But these patterns are awesome in their own right, and if your situation calls for
them, you should apply them with your head heid high. Our goal in this appendix is

to give you a high level idea of what these patterns are all about.
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