A Brain-Friendly Guide

? ‘Head First

Learn why everything

Avoid those " your friends know about
embarrassing Factory pattern is
coupling mistakes probably B o
wrong

Load the paﬁterns;
that matter straight
 into your brain

Discover the secrets
of the Patter_ns Guru

See why Jim’s
ove life improved
‘when he cut down
is inheritance

Find out how |
Starbuzz Coffee doubled
their stock price with
the Decorator pattern

O'REILLY® Eric Freeman & Elisabeth Freeman

with Kathy Sierra & Bert Bates

Table of Contents (summary)

Inwro XXV
1 Welcome o Design Patterns: an ntroduction 1
2 Keeping yvour Objects in the know: the Observer Fattern 37
3 Decorating Objects: ihe Decorator Pattern 79
4 Baking with OO goodness: the Jaclory Patiern 109
5 One of & Kind Obsjects: the Singleton Fattern 169
6 Lncapsulating Invocation: the Command Pattern 191
7 Being Adaptive: the Adapler and Facade Fatierns 235
& Encapsulating Algorithms: the Template Meihod Paitern 275
9 Well-managed Collections: #he Jterator and Composite Patterns 315
10 The State of Things: the Stafe Faitern 385
11 Controlling Object Access: e Proxy Pattern 429
12 Pauerns of Patterns: Compound Palterns 499
13 Paticrns in the Real World: Beiter Living with Patterns 577
14 Appendix: Leffover Fatterns 611

Tahle

Intro

Your brain on Design Patterns. Here you are trying to fearn something, while

here your brain is doing you a favor by making sure the learning doesn't stick. Your brain’s

thinking, "Better leave room for more important things, like which wild animals to avoid and
whether naked snowboarding is a bad idea.” So how do you trick your brain into thinking

that your life depends on knowing Design Patterns?

Who is this book for? xxvl
We know what your brain is thinking xxvil
Metacognition X¥ix
Bend vour brain into submission XXXl
Technical reviewers ¥xXxiv

Acknowledgements KXV

Remember, knowing
concepts like abstraction,

inheritance, and polymorphism do
not make you o good object oriented
designer. A design guru thinks
about how to create flexible
designs that are maintainable

and that can cope with
change.

intro to Design Patterns

Welcome to Design Patterns

Someone has already solved your problems. in this chapter,
you'll iearn why (and how) you can exploit the wisdom and lessons learned by
other developers who've been down the same design problem road and survived
the trip. Before we're done, we'll look at the use and benefits of design patterns,
lock at some key OO design principles, and walk through an example of how one
pattern works, The best way to use patterns is to load your brain with them and
then recognize places in your designs and existing applications where you can

apply them. Instead of code reuse, with patterns you get experience reuse.

The SimUuck app

Joe thinks about inheritance...

How about an interface?

The one constant in software development

Separating what changes from what stays the same

Designing the Duck Behaviors

Testing the Duck code

Sctting behavior dynamically

"T'he Big Picture on encapsulated hehaviars
ITAS-A can be better than IS-A

The Strategy Pattern

The power of a shared pattern vocabulary
How do Tuse Design Patterns?

Tools tor your Design "Loolbox

Exercise Solutions

7 Bungh of Fatterns

Youe Lode, v e

and WY*""d with
Aesite ?a&cvns.

(S)

10

18
20
22
23
24
28
29
32
34

the QObserver Tattern

Keeping your Objects in the Know

Don’t miss out when something interesting happens!

We've got a pattern that keeps your objects in the know when something they

might care about happens. Objects can even decide at runtime whether they
want to be kept informed. The Observer Pattern is one of the most heavily used
patterns in the JOK, and it's incredibly useful. Before we're done, we'll also lock
at one to many relationships and loose coupling {(yeah, that's right, we said

coupling). With Observer, you'll be the life of the Patterns Party.

"The Weather Monitoring applicalion
Meet the Ohserver Pattern

Publishers + Subscribers = Ohbserver Pattern

i &\,;by,a&i’§°“
e ET Five minutc drama: a subject for observation
) OO Pr'\h(;lv\cs The Observer Pattern defined
g © varies The power of Locse Coupling
ake whd n _) -
i ﬁ‘ﬂ&a"w\ ion e W= Designing the Weather Station
Corpasit
H Favor Implementing the Weather Station
51 -{'ﬂ?\fcc’ § 5 ?\0“'(« e
4 Prosyam Lo fnber abes Using Java’s built-in Ohserver Pattern
& A +
m‘ﬂemn&;& hons \ ?\cd The dark side of java.udl.Observable
. osely £0¥ .
i Ghyive E:fc‘:eehi i hat "Tools [or your Design Toolbex
sions OF
desty Exercise Solutions

wber att

ONE T MANY RELATIONSHP

Doect that
helds state

@e?emécné Obeads

the Decorator Pattern

Decorating Objects

Just call this chapter “Design Eye for the Inheritance

Guy.” we'll re-examine the typical overuse of inheritance and you'll learn how

to decorate your classes at runtime using a form of object composition. Why?

Once you know the techniques of decorating, you'll be able to give your {or

someone else’s) objects new responsibilities without making any code changes

to the underlying classes.

—~

I used to think real men
subclassed everything. That was until
I learned the power of extension

at runtime, rather than at compile
time. Now look at me!

Welcome o Starbuzz Coflee

The Open-Closed Principle

Meet the Decorator Pattern

Constructing a Drink Order with Decorators
The Decorator Pattern Defined

Decorating our Beverages

Writing the Starbuzz code

Real World Decorators: Java [70

Writing vour own Java 170 Decorator

Tools for your Design Toolbox

Exercise Solutions

80
86
88
89
91
92
95
100
102
105
106

the Factorj Vattern

Baking with OO0 Goodness

Get ready to cook some loosely coupled OO designs.

There is more to making objects than just using the new operator. You'll learn

that instantiation is an activity that shouldn’t always be done in public and can
often lead to coupling problems. And you don’t want that, do you? Find out how

Factory Patterns can help save you from embarrasing dependencies.

When you see “new”, think “concrete” 110
Objectville Pizaa 112
Encapsulating object creation 114
Building a simple pizza factory 115
The Simple Factory defined 117
A Framework tor the pizza store 120
Allowing the subclasses to decide 121
Let’s make a PizzaStore 123
Declaring a factory method 125
Mezt the Factory Method Pattern 131
Parallel class hierarchies 132
Factory Method Pattern defined 134
A very dependent PizzaStore 137
Looking at object dependencies 138
The Dependency Inversion Principle 139
Meanwhile, back at the PizzaStore... 144
Families of ingredients... 145
Building our ingredient factories 146
Laooking at the Abstract Factory 153
Behind the scenes 154
Abstract Factory Pattern defined 156
Factory Mcthod and Abstract Factory compared {60
Tools for your Design Toolbox 162

Excreise Solutions 164

the Singleton Pattern

One of a Kind Objects

The Singleton Pattern: your ticket to creating one-of-a-
kind objects, for which there is only one instance. you
might be happy to know that of all patterns, the Singleton is the simplest in terms
of its class diagram; in fact the diagram holds just a single class! But don't get
too comfortable; despite its simplicity from a class design perspective, we'l
encounter quite a few bumps and potholes in its implementation. So buckle

up—this one’s not as simple as it seems...

One and only one object

The Little Singleton

Dissecting the classic Singleton Pattern

Confessions of a Singleton

The Chocolate Factory

Singleton Pattern defined
Pershey, ¥

, we have a problem...

BE the JVM

Dealing with multithreading

Singleton Q&A

Tools for your Design Toolbox

Exercise Solutions

170
171
173
174
175
177
178
179
180
184
186
188

et

imakeBurgarll, makeshakel

the Command Fattern

Encapsulating Invocation

In this chapter we take encapsulation to a whole new
level: we’re going to encapsulate method invocation.
That's right, by encapsulating invocation we can crystallize pieces of computation
s0 that the object invoking the computation doesn't need to worry about how to do
things; it just uses our crystallized method to get it done. We can also do some
wickedly smart things with these encapsulated method invocations, like save

them away for logging or reuse them to implement undo in our code.

—— Home Automation or Bust

Tl hewe o Burger
with Cheese and & Malt

Sheke The Remote Control

Taking a look at the vendor classes

Meanwhile, back at the Diner..

Lets study the Diner interaction

The Objectville Diner Roles and Responsibilities
From the Diner to the Gommand Pattern

Our {irst command objeet

The Command Pattern defined

The Command Pattern and the Remaote Control
%% Implementing the Remote Control

Putting the Remote Control through s paces

Time to write that documentation

Using state to implement Undo

Lvery remote necds a Party Mode!

Using a Macro Command

More uscs of the Command Pattern: (Jueuing requests
More uses of the Gommand Pattern: Logging requests
Tools for your Design Toolbox

Fxcreise Solulions

the Adapter and Facade Patterns
Being Adaptive

In this chapter we’re going to attempt such impossible
feats as putting a square peg in a round hole. sound impossible?
Not when we have Design Patterns. Remember the Decorator Pattern? We

wrapped objects to give them new responsibilities. Now we're going to wrap some
objects with a different purpose: to make their interfaces ook like something they're
not. Why would we do that? So we can adapt a design expecting one interface to a

class that implements a different interface. That's not all, while we're at it we're going

European Wall Qutlet

N

\

T swwie FOEC

Standard AC Flug

tc look at another pattern that wraps objects to simplify their interface,

AC Power Adapter

Adapiers all around us

Object Oriented Adapiers

The Adaprer Pattern explained

Adapter Pauern defined

Object and Class Adapters

Tonight’s tall: The Ohject Adapter and Class Adapter
Real World Adapters

Adapting an Emumeration to an [terator

Tonight's tallk: The Decorator Patiern and the Adapter Pattern
Home Sweet Home Theater

Lights, Camera, FFacacde!

Constructing your Home Theater Facade

Vacade Pattern defined

The Principle of Least Knowledge

Tools Tor your Design Toolbox

Exercise Solutions

| ol

i e
R
4p e
s Clunkys sl
ok pho e O

fea

£ Bollagwe WS

(2] smpthumhaqlnmwmr

[=] Vnumaluswv

Q) had vt

generaliz
—
relies on
subtlass for
soma sieos

gy i

© Heep the 1eabag in the waper
O Add lewon

Gatfeine Beverage
@ Boll tome water

O Brew

€ Pour beverage tha sup
© Add condiments

the Template Method Tattern

Encapsulating Algorithms

We’ve encapsulated object creation, method invocation,
complex interfaces, ducks, pizzas... what could be next?
We're going to get down to encapsulating pieces of algorithms so that subclasses can
hock themselves right into a computation anytime they want. We're even going to

learn about a design principle inspired by Hollywood.

Whipping up some collee and tea classes
Abstracting Collee and Tea
Taking the design further

Of:i:gei,! Abstracting prepareRecipel)

g "‘Wemm:m, Whart have we donc?

Q Py, 0ffegfy o
D ditigarayy i

Mect the Template Method

J Let’s make some tea

generalize
—

What did the Template Method get us?
relles on
m Template Method Pattern defined

Code up close

Hooked on Template Method...

qrinde

Q hew Fhecaftes

o tatmsrowie Using the hook

Coflee? Tea? Nah, let’s run the TestDrive

The TTollywood Principle

The Hollywood Principle and the Template Method
Template Methods in the Wild

Sorting with Template Method

Welve got some ducks to sort

Comparing ducks and ducks

The making of the sorting duck machine
Swingin’ with Frames

Applets

Tonight’s talk: Template Methed and Strategy
Tools for your Design Toolbox

Exercise Solutions

the Tterator and Composite Patterns

Well-Managed Collections

There are lots of ways to stuff objects into a coliection.

Putthem in an Array, a Stack, a List, a Map, take your pick. Each has its own

advantages and tradeoffs. But when your client wants to iterate over your objects,
are you going to show him your implementation? We certainly hope not! That just
wouldnt be professional. Don't worry—in this chapter you'll see how you can let
your clients iterate through your objects without ever seeing how you store your
objects. You're also going to learn how to create some super collections of objects
that can leap over some imprassive data structures in a single bound. You're also

going to learn a thing or two about object responsibility.

Objectville Diner and Pancake House merge 316

Comparing Mcnu implementations 318

g Can we encapsulale the iteration? 323

areaks My (Meet the Tterator Pattern 325
AR Piver Miaie

@ﬁ}x ' - o Adding an Iterator 1o DinerMenu 326

pohy PsertMens : Looking at the design 331

il ' Cleaning things up with java.util Itcrator 335

ff@ @ What does this get us? 335

h [terator Pattern defined 336

Single Responsibility 339

Iteravors and Collections 348

Trerators and Cloltections in Java 5 349

Just when we thought it was safe... 353

The Compaosite Pattern defined 356

Designing Menus with Composite 359

Implementing the Composite Menu 362

Flashback to Trerator 368

The Null Tterator 372

The magic of Tterator & Composite together... 374

Tools for your Design Toolbox 380

Exercise Solutions 381

the State Pattern

The State of Things

A little known fact: the Strategy and State Patterns were
twins separated at birth. As you know, the Strategy Pattern went on

to create a wildly successful business around interchangeable algorithms. State,

however, took the perhaps more noble path of helping objects learn to control their
behavior by changing their internal state. He's often overheard telling his object

clients, “just repeat after me, I'm good enough, I'm smart enough, and doggonit...

How do we implemeni state? 387

State Machines 101 308

) ik e bl e Ll wetls o A first attempt at a state machine 3090
e e s el e B e . : .

Torke ‘;fd;"ﬁxﬁwﬁlfﬁ?iﬁ.f{a:nmLas ey You knew it was coming,.. a chiange request 304

¢ desiop 38 Flewl 5 E
~ Wlighty Gurbill Evgineers - R .

_ The messy STATE of things... 396

Defining the State interfaces and classes 399

Implementing cur State Classes 401

Reworking the Gumball Machine 402

The State Pattern defined 410

State versus Strategy 411

State sanity check 417

We almaost forgot! 420

Tools for your Design Toolbox 423

Exercise Solutions 424

the Troxy Pattern

Controlling Object Access

Ever play good cop, bad cop? You're the good cop and you provide

all your services in a nice and friendly manner, but you don’t want everyone

asking you for services, so you have the bad cop controf access to you. That's

what proxies do: control and manage access. As you're going 1o see there are

fots of ways in which proxies stand in for the objects they proxy. Proxies have

been known to haui entire method calls over the Internet for their proxied objects:

they've also been known to patiently stand in the place for some pretty lazy

objects.

T cdinteleces
Subjact

reques]

equostl)

[Resswect b

Monitoring the gumbali machines
The role of the ‘remote proxy’

RMI detour

CGrumballMachine remote proxy
Remote proxy behind the seencs

T'he Proxy Pavtern defined

Get Ready for virtual proxy
Designing the CID cover virtual proxy
Virtual proxy behind the scences
Using the Java APTs proxy

Five minute drama: protecting subjects
Creating a dynamic proxy

The Proxy Zoo

Tools [or your Design Toolbox

Excrcise Solutious

<<interface>>
InvocationHanler

| imvokel;

now gons!ﬁ{,ﬁ

EES

e Tle ?\”m‘-‘{
& ol e tho

‘ Proxy
raquesl()

InvocationHandler

Ivakel)

430
434
137
450
458
460
162
464
170
474
478
479
484
491
492

Compound Tatterns

Patterns of Patterns

Who would have ever guessed that Patterns could work
together? vou've already witnessed the acrimonious Fireside Chats (and be

thankfui you dida't have to see the Pattern Death Match pages that the publisher
forced us to remove from the book so we could avoid having to use a Parent's
Advisory warning label), so who would have thought patterns can actually get along
well together? Believe it or not, some of the most powerful OO designs use several
patterns together. Get ready to take your pattern skills to the next level; it’s time for
Compound Patterns. Just be careful—your co-workers might kill you if you're struck

with Pattern Fever. Compound Parrerns

The beab i et a2 1)9 BFA asd g - Duck reunion
cold Fog o wirts & 12 S
(@R gy Adding an adapter
fopcongat 3 #
Y ane s " .
RIS, Adding a decorator
£ . ~
View 1 . Adding a tactory

Adding a composite, and iterator
Adding an observer

Patterns summary

Yo e iy heathar
st ooy |12 setond

A duck’s eye view: the class diagram
View [4

gima LY N I

Model-View-Coniroller, the song

Design Patterns are your key to the MVC

Locking at MVC through patterns-colored glasses

The vt & pdated
toi25 BRs

. i rals
Cranged K 5
ot ol hste

Using MVC to control the beat...

The Model

The View

The Controller

Exploring strategy

Adapting the model

Now we're ready for a HeartController
MV and the Web

Design Patterns and Model 2

Tools for your Design Toolbox

Lxercise Solutions

Better Living with Tatterns

Patterns in the Real World

Ahhhh, now you're ready for a bright new world filled with
Design Patterns. But, before you go opening all thase new doors of opportunity

we noed to cover a few details that you'll encounter out in the real world—things get a
little more complex out there than they are here in Objectville. Come along, we've got

a nice guide to help you through the transition...

Your Objectville guide 378
Design Pattern defined 579
Fooking more closely at the Design Pattern definition 581
May the force he with you 582
Pattern catalogs 583
How to create patterns 586
56 you wanna be a Design Patterns writer? 287
Organizing Design Patterns 589
Thinking in patterns 394
Your mind on patterns 597
Don’t forget the power of the shared vocabulary 599
Top five ways to share your vocabulary 600
Cruisin® Objerwville with the Gang of Four 601
Your journcy has just begun... 602
Other Design Paitern resources 603
The Patterns Zoo 504
Annihilating evil with Anti-Paiterns 606
Tools for your Design Toolbox 608
Leaving Ohjectville... 609

e Ralpr
e

{MMM\ ﬁ&ng oij Fow

A
Jobn Yihesides

l Doch Banema

Appendix: Leftover Patterns

Not everyone can be the most popular. Aot has changed in

the last 10 years. Since Design Patterns: Elements of Reusable Object-Oriented

Software first came out, developers have applied these patterns thousands of times.

The patterns we summarize in this appendix are full-fledged, card-carrying, official
GoF patterns, but aren’t always used as often as the patterns we've explored so
far. But these patterns are awesome in their own right, and if your situation calls for
them, you should apply them with your head heid high. Our goal in this appendix is

to give you a high level idea of what these patterns are all about.

Al bhre toempotifs .
Shame bior b do s s Bridge
5 a 1 vk ot
U L et worry shord

s ey ity Builder

Chain of Responsibility
Flyweight

Interpreter

Mediator

Memento

Protowype

Visitor

Index

612
614
616
618
620
522
624
626
628

631

