Edited by Victor Muñoz

Protein Folding, Misfolding and Aggregation

Classical Themes and Novel Approaches

RSC Publishing

Contents

Preface				,
Chapter 1	Heli	x-Coil	x as the Simplest Protein Model: Theory, Stability, and Design mes Doig	
	1.1	Introd	luction	
	1.2	Struct	ure of the α-Helix	
		1.2.1	Capping Motifs	2
		1.2.2	Metal Binding	
		1.2.3	The 3 ₁₀ -Helix	,
		1.2.4	The π -Helix	
	1.3	Design	n of Peptide Helices	4
			Host-Guest Studies	4
			Helix Lengths	;
			The Helix Dipole	:
			Acetylation and Amidation	:
		1.3.5	Solubility	(
			Concentration Determination	(
			Helix Templates	,
	1.4		-Coil Theory	,
			Zimm-Bragg Model	8
			Lifson-Roig Model	8
			AGADIR	12
			Lomize-Mosberg Model	13
	1.5		s Affecting α-Helix Stability	13
			Helix Interior	13
			Caps	14
		1.5.3	Phosphorylation	1:

	 1.5.4 Non-covalent Side-chain Interactions 1.5.5 Covalent Side-chain Interactions 1.5.6 Capping Motifs 1.5.7 Ionic Strength 1.5.8 Temperature References 	18 20 20 20 21 21
Chapter 2	Kinetics and Mechanisms of α-Helix Formation Urmi Doshi	
	2.1 Introduction2.2 Experimental Techniques Employed to Study	28
	Helix-Coil Kinetics	31
	2.3 Theoretical Approaches to Explore	
	Helix-Coil Kinetics	34
	2.4 General Observations in Helix-Coil Kinetics	35
	2.5 Kinetic Theory of the Helix-Coil Transition	37 39
	2.6 Free-Energy Landscape for α-Helix Formation2.7 Mechanisms of α-Helix Formation	41
	 2.7 Mechanisms of α-Helix Formation 2.8 Reaction Coordinates for α-Helix Formation 	43
	2.9 The Nature of the Diffusion Coefficient	
	for α-Helix Formation	44
	2.10 Implications for Protein Folding	45
	References	46
Chapter 3	The Protein Folding Energy Landscape: A Primer Peter G. Wolynes	
	 3.1 Energy Landscape: Metaphor and Math 3.2 Random Sequences – Prehistoric Proteins (Possibly), 	49
	but Not Most Modern Proteins	50
	3.3 The Statistical Energy Landscape	50
	3.4 The Energy Landscape of Long Evolved Proteins	55
	3.5 Minimal Frustration, Capillarity,	61
	and Protein Topology3.6 Delightful Prediction of Many of the Devilish Details	01
	3.6 Delightful Prediction of Many of the Devilish Details of Folding	64
	References	66
Chapter 4	Hydrogen Exchange Experiments: Detection and Characterization of Protein Folding Intermediates Yawen Bai	
	4.1 Introduction4.2 Intrinsic Exchange Rates for Unfolded Polypeptides	70 71

	4.3 Linderstrøm-Lang Model for Amide Hydrogen					
	Exchange in Folded Proteins	72				
	4.4 Characterization of Acid Denatured States					
	by Hydrogen Exchange	73				
	4.4.1 Apomyoglobin (AMb)	74				
	4.4.2 Cytochrome c (cyt c)	75				
	4.4.3 Ribonuclease H (RNase H)	75				
	4.5 Pulsed-Amide H/D Exchange Method	75				
	4.5.1 Cytochrome c	78				
	4.5.2 Apomyoglobin	78				
	4.5.3 RNase H	79				
	4.5.4 Hen Egg White Lysozyme (HEWL)	79				
	4.6 Native-State Hydrogen Exchange Method	80				
	4.6.1 Cytochrome c 4.6.2 RNase H	82				
	4.6.3 Rd-apocytochrome b_{562}	83 83				
	References	83				
	Kelerences	0.5				
Chapter 5	Statistical Differential Scanning Calorimetry: Probing					
Chapter 5	Protein Folding-Unfolding Ensembles					
	Beatriz Ibarra-Molero and Jose Manuel Sanchez-Ruiz					
	5.1 Differential Scanning Calorimetry (DSC) as a Tool					
	for the Complete Energetic Description of Protein					
	Folding/Unfolding Thermal Equilibria	85				
	5.2 Partition Functions of Folding/Unfolding Processes	87				
	5.3 The Two-state Equilibrium Model:					
	A Historical Perspective	93				
	5.4 Folding Free-energy Barriers from Equilibrium DSC					
	Experiments	96				
	5.5 The van 't Hoff to Calorimetric Enthalpy					
	Ratio Revisited	98				
	5.6 Protein Kinetic Stability: Free-energy Barriers for					
	Irreversible Denaturation from Scan-rate Dependent					
	DSC	100				
	References	103				
Chapter 6	Fast Protein Folding					
_	Martin Gruebele					
	6.1 Introduction	106				
	6.2 Fast Folding: Why and How?	108				
	6.3 Fast Dynamics of Polypeptide Chains	110				
	6.3.1 Loop Formation	111				
	6.3.2 Protein Collapse	114				

	6.3.4 Timescales	115 115 115 115 117 119 121 127 130 131		
Chapter 7	Single Molecule Spectroscopy in Protein Folding: From Ensembles to Single Molecules			
	Benjamin Schuler			
	7.1 Introduction	139		
	7.2 History and Principles of Single Molecule Detection	140		
	7.3 Kinetics: From Ensembles to Single Molecules	141		
	7.3.1 Rate Constants and Probabilities	143		
	7.4 Correlation Analysis	146		
	7.5 FRET Efficiency Distributions and Distance	1.40		
	Dynamics	149		
	7.5.1 Single Molecule FRET Experiments7.5.2 Timescales and Distance Distributions	149 150		
	7.5.3 Dynamics from Transfer Efficiency	150		
	Fluctuations	153		
	7.6 Pleasure, Pain, and Promise of Single Molecule	100		
	Experiments	154		
	Acknowledgements	156		
	References	156		
Chapter 8	Computer Simulations of Protein Folding Vijay S. Pande, Eric J. Sorin, Christopher D. Snow and Young Min Rhee			
	8.1 Introduction: Goals and Challenges of Simulating			
	Protein Folding	161		
	8.1.1 Simulating Protein Folding	161		
	8.1.2 What are the Challenges for Atomistic			
	Simulation?	163		
	8.2 Protein Folding Models: from Atomistic to Simplified			
	Representations	164		
	8.2.1 Atomic Force Fields	164		
	8.2.2 Implicit Solvation Models	166		

	8.2.3	Minimalist Models	16
	8.2.4	How Accurate are the Models?	168
8.3	Samp	ling: Methods to Tackle the Long Timescales	
	Involv	ved in Folding	169
	8.3.1	Tightly Coupled Molecular Dynamics	
		(TCMD)	169
	8.3.2	Replica Exchange Molecular Dynamics	
		(REMD)	169
	8.3.3	High-temperature Unfolding	170
	8.3.4		
		Implicit Solvation Models	170
	8.3.5	· ·	170
	8.3.6	1 &	171
		Graph-based Methods	171
0.4	8.3.8	Markovian State Model Methods	171
8.4		ation of Simulation Methodology: Protein	
		ng Kinetics	172
	8.4.1 8.4.2	Low-viscosity Simulations	172
	8.4.2	Estimating Rates with a Two-state Approximation	177
	8.4.3	Markovian State Models (MSMs)	173
	8.4.4	Other Approaches	176
8.5		eting Protein Folding Pathways	177 179
0.5	8.5.1	Kinetics Simulations	179
		Thermodynamics Simulations	181
8.6		usions	182
	rences		184
			10
		sign: Tailoring Sequence, Structure, and	
		pperties	
		hmann, Christopher J. Lanci, Thomas J. Petty II,	
Seur	ıg-gu K	Cang and Jeffery G. Saven	
9.1		luction	188
9.2	Empir	rical Approaches to Protein Design	190
	9.2.1		190
	9.2.2	Combinatorial Methods	191
	9.2.3	Directed Evolution	192
	9.2.4	Intrinsic Limitations	192
9.3		utational Approaches to Structured-based Design	193
	9.3.1	Backbone Structure and Sequence Constraints	194
	9.3.2	Residue Degrees of Freedom	194
	9.3.3	Energy Function	195
	9.3.4	Solvation City in 1N 12 12 2	195
	9.3.5	Foldability Criteria and Negative Design	196

Chapter 9

		026 6	earch and Characterization of Sequence	
			insembles	197
	9.4		Successes in Protein Design	198
	7.4		Cailored Mutations for Ultrafast Folding	198
			Designing Structure and Sequence	199
			Facilitating the Study of Membrane	• • • •
			roteins	201
			Proteins with Non-biological Components	202
			ymmetric Structures	202
			Computational Methods for Directed	
			Evolution	203
	9.5	Outlook		204
		outlook nowledge:		204
		rences		205
	11010	Circos		
Chapter 10	Prote	ein Misfo	lding and β-Amyloid Formation	
_	Alex	andra Es	teras-Chopo, Maria Teresa Pastor and	
	Luis	Serrano		
	101	.		214
	10.1	Introdu		214
	10.2		l Principles of Amyloid Formation	216 216
			Historical Perspective	210
		10.2.2	•	217
		10.2.2	Misfolding	217
		10.2.3	The Structural Architecture of Amyloid	221
		10.2.4	Fibrils	221
		10.2.4		224
		10.2.5	· ·	226
		10.0.6	Formation Starting	228
	10.2	10.2.6	Cytotoxicity Studies	229
	10.3	-	mental Studies on Amyloid Model Systems	227
		10.3.1	Diversity and Commonalities in the	229
		10.2.2	Amyloid Protein Family	230
	A1	10.3.2	Protein Amyloidogenic Regions	235
		nowledge	ments	235
	Reie	erences		<i>ت ک سک</i>
Chanter 11	l Scen	igrios for	Protein Aggregation: Molecular Dynamics	
Chapter 13			and Bioinformatics Analysis	
	Rux	andra Di	ima, Bogdan Tarus, G. Reddy, John E. Straub	
		D. Thiru		
		Y 4		0.41
	11.1			241
	11.2		rios for Peptide Association	243
		11.2.1	General Ideas	243

11.2.3 Dimerization of $A\beta_{10-35}$ Peptides	247	
11.2.4 Initial Stages in the PrP ^C Conformational		
Transition	251	
11.3 Conclusions	262	
References		
Subject Index		

11.2.2 The Assembly of $A\beta_{16-22}$ Oligomers

245