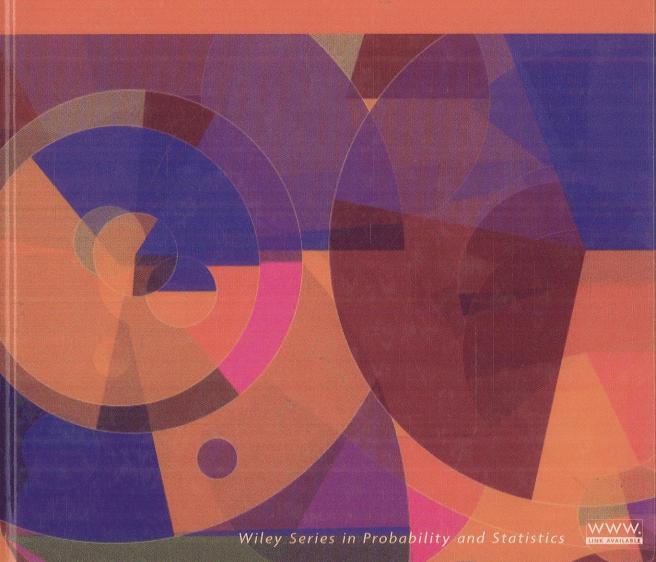


Approximate Dynamic Programming

Solving the Curses of Dimensionality

Warren B. Powell



CONTENTS

Pref	reface		хi
Ack	nowled	gments	xv
1	The	challenges of dynamic programming	1
	1.1	A dynamic programming example: a shortest path problem	2
	1.2	The three curses of dimensionality	3
	1.3	Some real applications	6
	1.4	Problem classes	10
	1.5	The many dialects of dynamic programming	12
	1.6	What is new in this book?	14
	1.7	Bibliographic notes	16
2	Som	e illustrative models	17
	2.1	Deterministic problems	18
	2.2	Stochastic problems	23
	2.3	Information acquisition problems	36
	2.4	A simple modeling framework for dynamic programs	40
	2.5	Bibliographic notes	43
		Problems	43

3	Intro	duction to Markov decision processes	47
	3.1	The optimality equations	48
	3.2	Finite horizon problems	53
	3.3	Infinite horizon problems	55
	3.4	Value iteration	57
	3.5	Policy iteration	61
	3.6	Hybrid value-policy iteration	63
	3.7	The linear programming method for dynamic programs	63
	3.8	Monotone policies*	64
	3.9	Why does it work?**	70
	3.10	Bibliographic notes	85
		Problems	86
4	Intro	duction to approximate dynamic programming	91
	4.1	The three curses of dimensionality (revisited)	92
	4.2	The basic idea	93
	4.3	Sampling random variables	100
	4.4	ADP using the post-decision state variable	101
	4.5	Low-dimensional representations of value functions	107
	4.6	So just what is approximate dynamic programming?	110
	4.7	Experimental issues	112
	4.8	Dynamic programming with missing or incomplete models	118
	4.9	Relationship to reinforcement learning	119
	4.10	But does it work?	120
	4.11	Bibliographic notes	122
		Problems	123
5	Mode	eling dynamic programs	129
	5.1	Notational style	131
	5.2	Modeling time	132
	5.3	Modeling resources	135
	5.4	The states of our system	139
	5.5	Modeling decisions	147
	5.6	The exogenous information process	151
-	5.7	The transition function	159
	5.8	The contribution function	166
	5.9	The objective function	169
	5.10	A measure-theoretic view of information**	170
	5.11	Bibliographic notes	173
		Problems	173

6	Stoc	hastic approximation methods	179
	6.1	A stochastic gradient algorithm	181
	6.2	Deterministic stepsize recipes	183
	6.3	Stochastic stepsizes	190
	6.4	Computing bias and variance	195
	6.5	Optimal stepsizes	197
	6.6	Some experimental comparisons of stepsize formulas	204
	6.7	Convergence	208
	6.8	Why does it work?**	210
	6.9	Bibliographic notes	220
		Problems	221
7	Approximating value functions		225
	7.1	Approximation using aggregation	226
	7.2	Approximation methods using regression models	237
	7.3	Recursive methods for regression models	246
	7.4	Neural networks	253
	7.5	Value function approximation for batch processes	257
	7.6	Why does it work?**	263
	7.7	Bibliographic notes	265
		Problems	267
8	ADP	for finite horizon problems	271
	8.1	Strategies for finite horizon problems	272
	8.2	Q-learning	276
	8.3	Temporal difference learning	279
	8.4	Policy iteration	282
	8.5	Monte Carlo value and policy iteration	284
	8.6	The actor-critic paradigm	285
	8.7	Bias in value function estimation	286
	8.8	State sampling strategies	290
	8.9	Starting and stopping	294
	8.10	A taxonomy of approximate dynamic programming strategies	296
	8.11	Why does it work**	298
	8.12	Bibliographic notes	298
		Problems	299
9	Infini	te horizon problems	303
	9.1	From finite to infinite horizon	304
	9.2	Algorithmic strategies	304
	9.3	Stepsizes for infinite horizon problems	313

	9.4	Error measures	315
	9.5	Direct ADP for on-line applications	317
	9.6	Finite horizon models for steady-state applications	317
	9.7	Why does it work?**	319
	9.8	Bibliographic notes	319
		Problems	320
10	Expl	oration vs. exploitation	323
	10.1	A learning exercise: the nomadic trucker	323
	10.2	Learning strategies	326
	10.3	A simple information acquisition problem	330
	10.4	Gittins indices and the information acquisition problem	332
	10.5	Variations	337
	10.6	The knowledge gradient algorithm	339
	10.7	Information acquisition in dynamic programming	342
	10.8	Bibliographic notes	346
		Problems	346
11	Value	e function approximations for special functions	351
	11.1	Value functions versus gradients	352
	11.2	Linear approximations	353
	11.3	Piecewise linear approximations	355
	11.4	The SHAPE algorithm	359
	11.5	Regression methods	362
	11.6	Cutting planes*	365
	11.7	Why does it work?**	377
	11.8	Bibliographic notes	383
		Problems	384
12	Dyna	amic resource allocation problems	387
	12.1	An asset acquisition problem	388
	12.2	The blood management problem	392
	12.3	A portfolio optimization problem	401
	12.4	A general resource allocation problem	404
	12.5	A fleet management problem	416
	12.6	A driver management problem	421
	12.7	Bibliographic references	427
		Problems	427
13	lmpl	ementation challenges	433
	13.1	Will ADP work for your problem?	433

13.2	Designing an ADP algorithm for complex problems	434
13.3	Debugging an ADP algorithm	436
13.4	Convergence issues	437
13.5	Modeling your problem	438
13.6	On-line vs. off-line models	440
13.7	If it works, patent it!	441
Index		457