Geometric Dimensioning and Tolerancing

Applications, Analysis & Measurement [per ASME Y14.5-2009]

James D. Meadows

Table of Contents

	mber Chapter Title	Page:
1	Symbols, Rules, Charts	1
	-Geometric Characteristics	2 3
	-Symbols	
	-New Symbols	5
	-Old Symbols, New Meanings	5
	-Charts-Food Chains of Symbology	6
	-A Few Basic Definitions, Formulas and Guidelines	8
	-New Rule Regarding the Use of Regardless of Feature Size	10
	-Maximum Material Boundary, Least Material Boundary and	
	Regardless of Material Boundary	10
	-Actual Minimum Material Envelope vs. Actual Mating Envelope	11
	-Flatness of the Derived Median Plane	12
	-Types of Controls	13
	-Tolerances	13
	-General Rules for Tolerances	15
2	Selecting a Tolerancing Approach	20
	-Datums and Datum Features	21
	-Defining, Tolerancing and Qualifying Datum Features	23
	-Fixed Fastener Assembly Tolerancing Formula	24
	-Simultaneous Requirement Rule	25
	-Reading a Feature Control Frame	28
3	Datum Feature Simulators	29
	-Datum Feature Simulators: Physical and Imaginary	30
	-Fixtures, Gages and Virtual Condition Boundaries	31
4	Boundaries and Material Condition Symbols, MMC, LMC & RFS	35
	-Dimensioning and Tolerancing Overview	36
	-Rule #1: Size Tolerance and Form Tolerance are Interdependent	37
	-Exceptions to Rule #1	38
	-New Principle of Independency Symbol	38
	-GO Gages	40
	-Brief Comparison of Concentricity, Circular Runout, Total Runout	
	and Position Tolerancing	42
	-Introduction of Orientation on Mating Parts	42
	-Material Condition Symbols and Concepts Explained	45
	-Regardless of Feature Size	45
	-Least Material Condition	48
	-Maximum Material Condition	49
	-Inner and Outer Boundary Calculations	50

5	Major Concepts of Geometric Dimensioning and Tolerancing	58
	Converting from Plus and Minus Tolerance to Geometric Tolerance	58
	-Position	63
	-Profile	64
	-Selecting Datum Features	64
	-Size Tolerance Controls Form Tolerance (Rule #1), GO Gages	66
	-Flatness	67
	-Perpendicularity	68
	-Mating Part Tolerancing	71
	-Reading the Feature Control Frames as a Language	74
	-Functional Gages	74
	-Calculating Inner and Outer Boundaries	75
	-Virtual Condition	75
	-Resultant Condition	75
	-Practical Absolute Gage Tolerancing	76
	-Bonus Tolerancing Formulas	78
	-Allowed vs. Actual Deviation from True Position Calculations	82
	-Conversion Chart Inches	84
	-Conversion Chart Millimeters	85
	-Tolerance Zone vs. Boundary Verification	88
	-Another Difference between Bonus Tolerance (Growth) and Datum Shift	
	(Movement) of Tolerance Zones	89
6	Form	93
	-Flatness	95
	-Straightness	001
	-Cylindricity	109
	-Circularity (Roundness)	113
	-Spherical Diameters Controlled with Circularity	118
	-Average Dimensions	119
7	Orientation	120
	-Parallelism	122
	-Parallelism of a Tangent Plane	128
	-Perpendicularity	129
	-Angularity	136
	-Angularity of a Tangent Plane	138
	-Angularity as a Refinement of Position	140
	-Shifting vs. Growing Tolerance Zones	142
8	Profile	146
	-Profile of a Surface	147
	-New Symbol for Unequal or Unilateral Profile Tolerancing	151
	-Profile of a Line	160
	-The Power and Versatility of Profile (Mating Parts)	163

	-Tolerancing Mating Part Profiles	163
	-Composite Profile	168
	-Composite vs. Two Single Segment Profile Controls	173
	-Profiling Patterns of Features Using 3 Levels of Profile Tolerances	176
	-Coplanarity	177
	-Continuous Feature of Size Symbol	177
	-Dimension Origin Symbol	180
	-Locating Offset Surface with Profile of a Surface	184
	-Conicity	187
9	Runout	191
	-Circular Runout	192
	-Total Runout	195
	-Comparison of Perpendicularity and Total Runout on a Planar Surface	203
10	Concentricity and Symmetry	207
	-Concentricity	208
	-Comparison of Coaxiality Controls	210
	-Symmetry	215
11	Datums	217
	-How They are Selected and What They Mean	219
	-Specifying Degrees of Freedom	223
	-Datum Feature Simulation	224
	-Designating Degrees of Freedom on the Part Drawing	227
	-Establishing a Valid Datum Plane	232
	-Effects of Differing Datum Precedence on Part Acceptance	237
	-Curved Surface as a Datum Feature	238
	-Conical Datum Features	239
	-Datum Feature Pattern Referenced Regardless of Material Boundary	240
	-Inclined Datum Feature	241
	-Constant Cross-Sections and Complex Datum Features	242
	-Specifying Degrees of Freedom in the Feature Control Frame	243
	-Multiple Datum Reference Frame Identification	245
	-Correct Material Boundary Size Specified Next to the Datum Feature	246
	-Correct Material Boundary Calculations	247
	-Using the Translation Modifier	248
	-Basic or BSC Spelled Out in a Feature Control Frame	250
	-Planar Datum Feature Simulated at Regardless of Material Boundary (RMB)	252
	-Planar Datum Feature Simulated at Maximum Material Boundary (MMB)	253
	-Offset Datum Features of Size Simulated at RMB and MMB	255
	-Profiled Datum Features Simulated at RMB and MMB	256
	-Irregular Datum Features of Size	263
	12 Centerplane Datums	264
	-An Overview	265

	-Centerplane Datums on Mating Parts in a Fixed Fastener Assembly	267
13	Position with Fixed Fastener Assemblies and Projected Tolerance Zones	279
	-Tolerancing Mating Parts in a Fixed Fastener Assembly	280
	-Projected Tolerance Zones and How they are Measured	286
	-Datum Feature Shift/Pattern Shift	289
	-Alternate Method Using Chain Lines to Show Projected Tolerance Zones	292
	-Calculating Clearance Hole Sizes Needed Without Projected Tolerance Zones	293
14	Tolerancing Mating Parts in a Floating Fastener Assembly	294
	-Floating Fastener Assembly Condition (Radial Hole Patterns)	295
	-Assigning Datum Features to Mating Parts with Radial Hole Patterns	296
	-Calculating Position Tolerance	298
	-Two Single Segment Position Tolerancing	300
	-Calculating Minimum Wall Thicknesses	301
	-Accumulative Datum Shift on Mating Parts in an Assembly	303
	-Tolerance Zones and Their Movement with Two Single Segment Position	304
15	Direct vs. Indirect Relationships	305
	-Overview	306
	-Tolerancing Mating Parts Holding Function Directly and Indirectly	308
	-Switching Datums in Mid-Stream	311
	-Unique Effects of Utilizing the LMC and LMB Concepts	311
	-Wall Thickness Calculations	314
16	Datum Targets	321
	-Flexible Parts, Datum Targets and Partial Datum Features	322
	-Sheet Metal Panels and GD&T Sheets	327
	-Equalizing Datums	329
	-Moveable Targets, Finding the Datum Planes and Fixturing	333
	-Datum Target Symbols for Spherical Diameters	335
	-Centerplane Datums	336
	-Spherical Tolerance Zones	337
17	Datum Feature Scheme Choices	338
	-Datum Feature Patterns and Profile	339
	-Simultaneous Requirements	342
	-Compound Datum Features of Size	345
	-Secondary and Tertiary Datum Features of Size	347
	-Finished Machining Requirements for a Cast Part	350
18	Flexible Parts	352
	-Flexible Parts and Inspecting Them in the Way They Work	353
	-Temporary Datum Features	354
	-Common Misconceptions	355
	-Free State Variation in Sheet Metal Parts	356

	-Specifying Restrained State Inspection	358
	-Fixturing Sheet Metal Parts	359
	-Profile ALL OVER Controls and What They Mean	363
19	Position Boundary Concept	366
	-Position Boundary	367
	-Elongated Holes	367
	-Functional Gages and Virtual Condition Boundaries	370
	-Tolerancing Hoses, Pipes and Tubing with Positional Boundary	371
	-Tolerancing Oddly Configured Features with Positional Boundary	373
	-Oddly Configured Datum Features and How to Represent them in Gages	374
	-Tolerance Zones vs. Boundary Concept Explanation	376
	-Rectangular Tolerance Zones for Round Holes	378
	-Bi-directional Position Tolerancing, Polar Coordinate Method	379
20	Why Use GD&T	381
	-Multiple Interpretations of Simple Plus and Minus Tolerances	383
	-Converting from Plus and Minus to Composite Position Tolerancing	386
	-Calculating the Position Tolerance for a Composite Position Control	387
	-Minimum Wall Thickness Calculation for Composite Position Tolerances	391
	-Composite Tolerancing for Coaxial Hole Patterns	393
	-Minimum Wall Thickness Calculations for Coaxial Hole Patterns	393
	-Composite Position Tolerancing with 3 Levels of Control	396
	-Differentiating Between Features of Similar Size and Shape	397
21	Composite vs. Two Single Segment Positional Tolerancing	398
	-Composite vs. Two Single Segment Positional Tolerancing	399
	-Similarities	401
	-Differences	402
	-One Level Tolerancing vs. Composite Tol. and Simultaneous Requirements	405
	-Two Single Segment Position Controls	411
	-Refining Geometric Controls to be More Cost Effective	414
22	Dimensioning and Tolerancing of Gages	423
	-Dimensioning and Tolerancing of Gages per ASME Y14.43-2003	424
	-GO Gages	424
	-NOGO Gages	426
	-Functional Gages	427
	-Calculating to Determine Good Parts Rejected or Bad Parts Accepted	430
	-Steps in the Development of a Dimensional Inspection Plan	436
23	Tolerance Stack-Up Analysis	442
	-Tolerance Stack-Up Analysis for a Fixed Fastener Assembly	443
	-Rules	444
	-Calculating Gaps; Working the Route	445
	-Calculating Inner and Outer Boundary Means and Their Tolerances	448

	-Calculating Statistical Tolerancing	451
	-Root Sum Squares	451
	-Bender Factor	457
	-Reintegrating the Statistical Tolerancing into the Assembly	458
	-A Simpler Way to Reintegrate the Statistical Tolerance	461
	-More Statistical Formulas and Symbols	462
	-Glossary of Statistical Terms	464
24	How to be Specific in Calculating and Specifying Statistical Requirements	
	for Size and Geometric Tolerancing	466
	-Some Useful Definitions When Geometric Tolerances are Used	469
	-Symbology for SPC Formulas	471
	-Arithmetic Mean; Normal Distribution of Tolerance and the Standard	
	Deviation; Statistical Probability for Tolerance Stack-Up Analysis for	
	Positional Geometric Tolerances	474
	-Calculating a Standard Deviation	476
	-Predicting the Amount of Tolerance to be Consumed by Manufacturing	477
	-Charts and Tables	478
25	Tolerance Stack-Up Analysis in a 5-Part Assembly	481
	-Determining a MIN GAP in a Rotating Assembly	482
	-Factors vs. Non-factors	483
	-Alignment	485
	-Dealing with Threaded Features	486
	-Calculating the Pertinent Numbers	490
	-Simplifying the Assembly Drawing	491
	-Creating a Line Graph with Numbers to Calculate the Minimum Clearance	492
	-Adding the Negative and Positive Designations	492
	-Wall Thickness Calculations and Choosing the Pertinent Tolerances	493
	-Single Part Analysis	496
	-Using Profile Tol. and Separate Requirements for Accumulated Error	499
26	Tolerance Stack-Up Created during Manufacture due to Changing Set Ups	502
	-Where the Tolerance Accumulation Comes From	503
	-Proportions and Trigonometry	504
27	GD&T as a Language	507
	-To Properly Read a Drawing	508
	-Reading the Feature Control Frames as Sentences	512
	-Profile	513
	-Tolerance Zones and Pattern Shift Zones	513
	-Reading Two Single Segment Controls	514
	-Using Gages to Visualize a Geometric Tolerance's Meaning	517
	-Reading a GD&T Sheet	526
	-Optional Tolerancing Approaches for Similar Results	529
	-Gears	530

	-Pattern Shift, Where it Comes From and How it Effects the Workpiece	532
	-Bonus Tolerance, Virtual Condition and Zero Positional Tolerances	535
	-Threads, Gears and Splines	536
	-Sequential Tolerancing Using the Simultaneous Requirement Rule	537
28	Definitions	539
	Index	568
	Bibliography	573
	Other GD&T Course Materials Written by James D. Meadows	574