
A State-of-the-Art Volume in Honour of Professor J.A. Schey's 80th Birthday

Edited by John G. Lenard

Twist-compression

Table of Contents

Chapter 1				
Recollection	ns (gradı	ıate studen	ts)	١
Chapter 2				
John Schey	and Val	ue-Added N	Aanufacturing (Brzustowski)	9
2.1	STRIE	KING CLA	RITY	9
2.2	AN EC	CONOMIC	FACT	9
2.3	RICH	IN IDEAS		10
2.4	JUST	ONE OF M	IANY CONTRIBUTIONS	11
	REFE	RENCES		11
Chapter 3				
Introductio	n – The	Scheme of	the Book (Lenard)	13
3.1	INTR	ODUCTIO	N	13
3.2	THE	TECHNIC	AL PRESENTATIONS	13
	REFE	RENCES		18
Chapter 4				
Surface Fir	ish and	Friction in	Cold Metal Rolling (Sutcliffe)	19
4.1	INTR	ODUCTIO	N	19
4.2			D ROLLING	21
	4.2.1	Without b	oulk deformation	21
	4.2.2	With bull	deformation	22
	4.2.3	Random	rough surfaces	28
4.3	MIXED LUBRICATION			29
	4.3.1			29
		4.3.1.1	Asperity deformation	29
		4.3.1.2	Hydrodynamic equations	29
		4.3.1.3	Method of solution	30
		4.3.1.4		31
		4.3.1.5	Summary of models	32
	4.3.2		ental methods	33
	4.3.3	Theoretic	al results and comparison with experiments	3.5
	4.3.4	Other ext	perimental results	41

	4.3.5	Foil and to	emper rolling	42	
	4.3.6	Thermal e		43	
4.4	MICR	MICRO-PLASTO-HYDRODYNAMIC LUBRICATION			
	(MPH	,		43	
	4.4.1		sto-hydrodynamic lubrication in the mixed		
		lubrication		44	
	4.4.2	•	sto-hydrodynamic lubrication of pits	45	
		4.4.2.1	Measurement of pit geometry	45	
		4.4.2.2	Modelling and comparison with		
			experiments	47	
4.5			BRICATION	50	
4.6		SFER LAY	ERS	51	
4.7		CLUSIONS		54	
	REFE	RENCES		55	
Chapter 5					
	rvation	of Interface	e for Tribology in Metal Forming		
(Azushima)				61	
5.1	DIRECT OBSERVATION OF INTERFACE IN SHEET				
	DRAV				
	5.1.1		for direct observation	63	
	5.1.2		ervation of micro-PHL	64	
	5.1.3		n of micro-PHI.	67	
	5.1.4	micro-PHI	endence of coefficient of friction under	69	
5.2 DIRECT OBSERVATION OF INTERFACE IN FLAT					
	TOOL DRAWING				
	5.2.1		ervation of the interface	72	
	5.2.2		ependence of the coefficient of friction	73	
	5.2.3		surface topography of the workpiece	78	
	REFE	RENCES		83	
Chapter 6				0.0	
An Examina	ition of	the Coeffic	ient of Friction (Lenard)	85	
6.1	INTR	ODUCTIO	N	85	
6.2	FUND	DAMENTA!	L IDEAS	86	
	6.2.1		ns of friction	86	
	6.2.2		ion hypothesis	87	
	6.2.3		neters affecting surface interactions	87	
	6.2.4		ng the coefficient of friction	88	
		6.2.4.1	Experimental approach	88	
		6.2.4.2	Semi-empirical formulae - cold rolling	90	
		6.2.4.3	Inverse calculations	93	
	6.2.5		on of a lubricant	94	
		6.2.5.1	The lubrication regimes	94	

TABLE OF CONTENTS

		6.2.5.2	The sensitivity of the lubricant's viscosity	
			to the pressure and the temperature	95
		6.2.5.3	Entrainment of the lubricants	97
6.3	EXPE	RIMENTA	L STUDIES	97
	6.3.1	Equipmen	t and procedure	98
6.4	THE		ENT OF FRICTION IN FLAT ROLLING	99
	6.4.1		g of aluminium alloy strips	99
	6.4.2		ng of an aluminium alloy, using lubricants	
	0.1.2		dary additives	100
	6.4.3		ig steel strips, using lubricants and emulsions	101
	0.1.5	6.4.3.1	Neat oils	101
		6.4.3.2	Neat oils and emulsions	102
	6.4.4		g aluminium alloys using emulsions	104
	6.4.5		g steel strips	100
6.5			NCE OF THE COEFFICIENT OF	107
0.5				
			PROCESS AND MATERIAL	100
		METERS		108
	REFE	ERENCES		111
Chapter 7				
	Micro P	lasto Hydro	dynamic Lubrication in Metal Forming	
		isen and Shi		115
= .	******	OD CHEMO	•	
7.1		ODCUTIO		115
7.2			L INVESTIGATION	116
	7.2.1		t and basic procedures	116
	7.2.2		imprints on deformed strips	118
	7.2.3		of materials and process parameters on	
		lubricant e		118
	7.2.4		of pocket geometry on lubricant escape	120
		7.2.4.1	Hydrostatic pressure increase	120
		7.2.4.2	Influence of pocket volume	121
		7.2.4.3	Influence of angle to the edge	123
		7.2.4.4	Influence of radius of curvature on the	
			edge	125
7.3			AL MODEL OF MICRO PLASTO	
			AND HYDRODYNAMIC	
		RICATION		128
7.4	CON	CLUSIONS		133
	REFE	RENCES		134
Chapter 8				
	Simulati	ion of Sheet	Metal Forming (Worswick)	135
		or oneet		133
8.1			N TO STAMPING SIMULATION - A	
	DEEP	DRAWN (CUP	136
	8.1.1	Finite elen		137
	8.1.2	Boundary	conditions and contact treatment	138
		-		

	8.1.3 Forming predictions	139
8.2	EXPLICIT DYNAMIC VERSUS IMPLICIT	
	FORMULATIONS	140
	8.2.1 Explicit dynamic method	141
	8.2.2 Static implicit method	142
	8.2.3 Choosing between implicit and explicit methods	142
8.3	MODELLING THE CONSTITUTIVE RESPONSE OF	
0.0	SHEET METALS	143
	8.3.1 Phenomenological yield loci	143
	8.3.2 Formability predictions	151
	8.3.2.1 Forming limit diagram approach	151
	8.3.2.2 Damage-based constitutive models	151
8.4	SIMULATION OF STRETCH FLANGE FORMING	151
8.5	SIMULATION OF STRETCH PLANGE FORMING SIMULATION OF ALUMINUM ALLOY TAILOR	133
0.5	WELDED BLANKS	157
		156
		158
	8.5.2 Simulation of large-scale TWBs	160
0.6	8.5.3 Damage prediction in the weld region	162
8.6	SIMULATION OF ELECTROMAGNETIC FORMING	165
	8.6.1 EMF equations	166
	8.6.2 Electromagnetic forming finite element model	167
	8.6.3 EM field modelling	167
	8.6.4 Structural modelling	168
8.7	MODELLING PRODUCT PERFORMANCE – DENT	
	RESISTANCE	170
	8.7.1 Numerical simulation of panel forming and denting	171
	8.7.2 Closure sheet-inner panel interactions	174
8.8	SUMMARY AND FUTURE	175
	ACKNOWLEDGEMENTS	176
	REFERENCES	176
Chapter 9		
Geometric a	and Mechanics Model of Sheet Forming (Duncan)	183
9.1	INTRODUCTION	183
9.2	PLANE STRESS DEFORMATION	184
9.3	FORCE PER UNIT WIDTH, OR "TENSION"	186
	9.3.1 "Constant tension" assumption	187
9.4	BENDING AND UNBENDING MODELS	188
9.5	SUPPORTING SOFTWARE	190
9.6	CONCLUSIONS	191
	ACKNOWLEDGEMENTS	191
Chapter 10		
4	and Optimization of Metal Forming Processes (Manninen,	
	ser, Revuelta and Korhonen)	193
Lui Moia, C	VWA 9 ARW HUARDO DIEN ARVE ARVERVEN	275
10.1	INTRODUCTION	193

TABLE OF CONTENTS

10.2	ON MODELLING AND OPTIMIZATION				
10.3		NG OF METALS	195		
		Prediction of the rolling force	195		
	10.3.2	Analysis of factors influencing the product quality	196		
10.4		DRAWING OF STAINLESS STEEL	199		
10.5	CONTINUOUS EXTRUSION				
10.6	DRY TURNING OF Ca-TREATED STEEL				
10.7		IZING THE TUBE HYDROFORMING PROCESS	204 205		
	10.7.1		205		
	10.7.2	•	206		
	10.7.3		206		
		10.7.3.1 Qualitative definition	206		
		10.7.3.2 Quantitative definition	206		
		10.7.3,3 Optimization setup	209		
		10.7.3.4 Optimizing and results	210		
10.8	SUMM	ARY AND CONCLUSIONS	210		
		ENCES	211		
Chapter II					
The Mathen	natical M	odelling of Hot Rolling of Steel (Yue)	213		
11.1	OVERV	JIFW	213		
11.2			213		
11.2	2 THE CANMET – McGILL MATHEMATICAL MODEL FOR MICROSTRUCTURAL EVOLUTION OF STEELS				
		G HOT ROLLING	214		
	11.2.1	Stages of hot rolling	214		
	11.2.1	Model inputs	215		
	11.2.2	Model outputs	213		
	11.2.4		216		
	11.2.5	Transformation during cooling to coiling (on the	210		
	11.2.3	runout table)	222		
	11.2.6	Effective austenite surface area per unit volume	222		
	11.2.7	•	223		
	11.2.8	Austenite transformation to ferrite, pearlite and	22,7		
	11.2.0	bainite	223		
	11.2.9		224		
	11.2.10		224		
11.3	DISCU		224		
		RENCES	225		
Chapter 12					
	on of Rhe	ological and Tribological Parameters (Szeliga and			
Pietrzyk)			227		
12.1	THEIN	NVERSE METHOD	228		
12.1	12.1.1	Definition of the inverse problem	228		
	12.1.1	Experiment	230		
	12.1.2	Direct problem	231		
	12.1.3	Direct problem	∠31		

	10.1.		232
	12.1.4 Goal function and optimization procedure		
	12.1.5	Two-step inverse algorithm	234
12.2	RESUL		237
	12.2.1	Identification of rheological and friction properties	237
	12.2.2	Identification of internal variable model parameters	
		and friction properties	242
	12.2.3	Identification of material properties from	
		axisymmetrical test performed using various	
		plastometric simulators	247
	12.2.4	Identification of material properties from	
		axisymmetrical and plane strain compression test	250
12.3	DISCUS	SSION	254
12.4	CONCI	LUSIONS	255
	ACKNO	DWLEDGEMENTS	255
	REFER	ENCES	255
Chapter 13			
Oxide Behav	viour in F	lot Rolling (Krzyzanowski and Beynon)	259
13.1		RS INFLUENCING FRICTION, HEAT	
	TRANS	FER AND QUALITY OF THE PRODUCT IN	
	HOT R	OLLING	259
13.2	OXIDE	FAILURE DURING HOT TENSILE TESTING	261
	13.2.1	Experimental	261
	13.2.2	Modes of oxide scale failure in tension and	
		measurement of separation loads	263
13.3	MATH	EMATICAL MODEL	266
	13.3.1	Model of oxide scale failure	266
13.4	EFFEC	T OF CHANGING STEEL COMPOSITION	271
	13.4.1	Comparison of oxide scale growth and morphology	271
	13.4.2	Comparison of failure modes	274
13.5		SIS OF OXIDE SCALE FAILURE AT ENTRY INTO	
	THE RO	OLL GAP	279
	13.5.1	Effect of initial stock temperature	280
	13.5.2		282
	13.5.3	Verification of the model prediction using stalled hot	
		rolling tests	284
13.6	OXIDE	E SCALE FAILURE IN THE ROLL GAP	286
13.7		YSIS OF DESCALING EVENTS	289
13.7	13.7.1	Hydraulic descaling	289
	13.7.1	Mechanical descaling	289
		OWLEDGEMENTS	294
		RENCES	294
	R. C. P. P.	N. P. (3.8) P. (3.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	2)-

TABLE OF CONTENTS

Chapt				
Fricti	on, Lubri	ication and S	Surface Response in Wire Drawing	
(Wrig	(ht)			297
14.1	BASIC	CONCEPTS		297
1	14.1.1		stress characterization	297
	14.1.2	Determini	ng friction mode by wire surface analysis	300
14.2	THE EI		remperature	303
14.3			PERATURE INTERACTIONS	305
14.4		SS DESIGN		305
	14.4.1			305
	14.4.2	Die materi	al and die angle	307
	14.4.3		drawing effects	307
14.5	THE DI	RAWING O		307
14.6	THE GI	ENERATIO	N OF FINES	309
		ENCES		311
Chapt				
Mode	lling and	l Control of	Temper Rolling and Skin Pass Rolling	
(Wikl	und and	Sandberg)		313
15.1	INTRO	DUCTION		313
	15.1.1	What do w	e mean by temper rolling and skin pass	
		rolling?		313
	15.1.2	Why		313
	15.1.3	How		314
		15.1.3.1	Mechanical properties	314
		15.1.3.2	Coining and smoothing of the surface	316
		15.1.3.3	Improving the flatness	317
15.2			THE ROLL GAP	319
	15.2.1		conventional cold rolling models	319
	15.2.2			319
	15.2.3	A hybrid n	nodel	320
	15.2.4	FEM	TI FEM. 1	321
		15.2.4.1	The FEM tool	321
		15,2.4.2	Simulations with a simple constitutive	201
		15042	model Simulations with an advanced	321
		15.2.4.3		220
	15 2 5	Maleina fa	constitutive model	322
	15.2.5	simulation	st predicting models from FEM	226
15 3	MODE			326
15.3		FEM	THE ROLL FORCE	328
	15.3.1 15.3.2		dalling	328
	13.3.2	Hybrid mo 15.3.2.1	The neural network tool	328 329
		15.3.2.1	Process data set 1	
				329
		15.3.2.3	Modelling with process data set 1	330

		15.3.2.4	Process data set 2	332
		15.3.2.5	The old set-up model and a neural	
			network model	332
		15.3.2.6	A physically based model, a neural	
			network model and a hybrid model	333
		15,3,2,7	Classic cold rolling theory	334
		15.3.2.8	Detection of flat zones within the roll	
			gap	336
		15.3.2.9	Process data set 3 and a neural model	338
		15.3.2.10	Hybrid model combining a classic	
			model and a neural network model	338
15.4	CONCI	LUSIONS FR	OM THE MODELLING EXERCISES	340
15.5	PROCE	ESS CONTRO	OL	341
	15.5.1	Set-up befo	ore the rolling pass	341
	15.5.2	Feed-back	control during the rolling pass using the	
		mass flow	method	341
	15.5.3	Forward ar	nd backward tension	341
15.6	DEVEL	OPMENT T	RENDS	341
	15.6.1	Modelling	and control	341
	15.6.2	Temper rol	ling and tension levelling	342
	ACKN	OWLEDGE	MENTS	342
	REFER	RENCES		342
AUTHOR I	NDEX			345
SUBJECT	INDEX			353