An Introduction to Thermodynamics and Statistical Mechanics

A.K. Saxena

CONTENTS

Preface		
CHAPTER - 1	FIRST LAW OF THERMODYNAMICS	1-19
1.1 1.2 1.3	Thermodynamic System and Thermodynamic Coordinates Concept of Temperature Work Done by a Thermodynamic System in Expansion against	1 2
	External Pressure 1.3.1 Work Done at Constant Volume 4 1.3.2 Work Done at Constant Pressure 4 1.3.3 Work Done at Constant Temperature 4 1.3.4 Work Done in Thermal Isolation 5	2
1.4	The First Law of Thermodynamics	6
1.5	Heat Capacity	7
1.6	Specific Heat Capacity	8
1.7	Relationship between C_p and C_v	9
1.8	Internal Energy of an Ideal Gas	10
1.9	Heat Capacities of Ideal Gases	11
1.10	Applications of the First Law of Thermodynamics to an	
	Ideal Gas	13
	1.10.1 Adiabatic Process 13	
	1.10.2 Isothermal Processes 14	
	1.10.3 Constant Volume Processes (Isochoric Process) 141.10.4 Cyclic Processes 14	
1.11	Path function and Point Function	15
	Questions	19
CHAPTER – 2	ENTROPY AND THE SECOND LAW OF THERMODYNAMICS	20-44
2.1	Constraints and Accessible States	20
2.2	Reversible and Irreversible Processes	20
	2.2.1 Quasistatic Process 20	
	2.2.2 Non-equilibrium Processes 21	
2.3	The Concept of Entropy 2.3.1 Definition of Entropy 22	21

		2.3.2 Entropy as a State Property 23	
	2.4	Cyclic Heat Engine	23
	2.5	The Second Law of Thermodynamics	25
	2.6	Carnot Cycle	26
	2.7	Absolute Temperature Scale	27
	2.8	Two Reversible Adiabatic Paths cannot intersect each other	28
	2.9	Carnot's Theorem	28
	2.10	The Clausius Inequality	29
	2.11	Entropy Change in an Irreversible Process	31
	2.12	Entropy Change of a Perfect Gas in a Reversible Process	32
	2.13	Mixing of Two Fluids	35
	2.14	A Perfect Engine	36
	2.15	Carnot Refrigerator	37
	2.16	Principal of Degradation of Energy	38
	2.17	Theorem of Maximum Work	39
	2.18	Nernst Heat Theorem and Third Law of Thermodynamics	39
	2.19	Unattainability of Absolute Zero	42
	2.20	Intensive and Extensive Parameters	42
		Question§	43
(CHAPTER - 3	THERMODYNAMIC RELATIONS	45-72
(CHAPTER – 3 3.1	THERMODYNAMIC RELATIONS General Fielations for a Homogeneous Substance (Maxwell's Relation)	45-72 45
(
(3.1	General Relations for a Homogeneous Substance (Maxwell's Relation)	
(3.1	General Relations for a Homogeneous Substance (Maxwell's Relation) Derivation of Thermodynamic Variables in terms of Thermodynamic	45
(3.1 3.2	General Relations for a Homogeneous Substance (Maxwell's Relation) Derivation of Thermodynamic Variables in terms of Thermodynamic Potentials	45 48
(3.1 3.2 3.3	General Relations for a Homogeneous Substance (Maxwell's Relation) Derivation of Thermodynamic Variables in terms of Thermodynamic Potentials Gibbs – Helmholtz Equations TdS Equations Specific Heat at Constant Volume and Constant Pressure in terms of	45 48 49 51
(3.1 3.2 3.3 3.4	General Relations for a Homogeneous Substance (Maxwell's Relation) Derivation of Thermodynamic Variables in terms of Thermodynamic Potentials Gibbs – Helmholtz Equations TdS Equations Specific Heat at Constant Volume and Constant Pressure in terms of Thermodynamic Potentials	45 48 49 51
(3.1 3.2 3.3 3.4 3.5	General Relations for a Homogeneous Substance (Maxwell's Relation) Derivation of Thermodynamic Variables in terms of Thermodynamic Potentials Gibbs – Helmholtz Equations TdS Equations Specific Heat at Constant Volume and Constant Pressure in terms of Thermodynamic Potentials Expressions for $C_p - C_v$	45 48 49 51
(3.1 3.2 3.3 3.4 3.5	General Relations for a Homogeneous Substance (Maxwell's Relation) Derivation of Thermodynamic Variables in terms of Thermodynamic Potentials Gibbs – Helmholtz Equations TdS Equations Specific Heat at Constant Volume and Constant Pressure in terms of Thermodynamic Potentials Expressions for $C_p - C_v$ To Show that the Ratio of Adiabatic Bulk Modulus to Isothermal Bulk	45 48 49 51 52 53
•	3.1 3.2 3.3 3.4 3.5	General Relations for a Homogeneous Substance (Maxwell's Relation) Derivation of Thermodynamic Variables in terms of Thermodynamic Potentials Gibbs – Helmholtz Equations TdS Equations Specific Heat at Constant Volume and Constant Pressure in terms of Thermodynamic Potentials Expressions for $C_p - C_v$ To Show that the Ratio of Adiabatic Bulk Modulus to Isothermal Bulk Modulus Equals C_p / C_v	45 48 49 51 52 53
•	3.1 3.2 3.3 3.4 3.5	General Relations for a Homogeneous Substance (Maxwell's Relation) Derivation of Thermodynamic Variables in terms of Thermodynamic Potentials Gibbs – Helmholtz Equations TdS Equations Specific Heat at Constant Volume and Constant Pressure in terms of Thermodynamic Potentials Expressions for $C_p - C_v$ To Show that the Ratio of Adiabatic Bulk Modulus to Isothermal Bulk Modulus Equals C_p / C_v Clausius – Clapeyron Equation	45 48 49 51 52 53 55 56
•	3.1 3.2 3.3 3.4 3.5 3.6 3.7	General Relations for a Homogeneous Substance (Maxwell's Relation) Derivation of Thermodynamic Variables in terms of Thermodynamic Potentials Gibbs – Helmholtz Equations TdS Equations Specific Heat at Constant Volume and Constant Pressure in terms of Thermodynamic Potentials Expressions for $C_p - C_v$ To Show that the Ratio of Adiabatic Bulk Modulus to Isothermal Bulk Modulus Equals C_p / C_v Clausius – Clapeyron Equation Joule Thomson's Porous Plug Experiment	45 48 49 51 52 53 55 56 58
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	General Relations for a Homogeneous Substance (Maxwell's Relation) Derivation of Thermodynamic Variables in terms of Thermodynamic Potentials Gibbs – Helmholtz Equations TdS Equations Specific Heat at Constant Volume and Constant Pressure in terms of Thermodynamic Potentials Expressions for $C_p - C_v$ To Show that the Ratio of Adiabatic Bulk Modulus to Isothermal Bulk Modulus Equals C_p / C_v Clausius – Clapeyron Equation Joule Thomson's Porous Plug Experiment Production of Low Temperatures by Adiabatic Demagnetization	45 48 49 51 52 53 55 56
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	General Relations for a Homogeneous Substance (Maxwell's Relation) Derivation of Thermodynamic Variables in terms of Thermodynamic Potentials Gibbs – Helmholtz Equations TdS Equations Specific Heat at Constant Volume and Constant Pressure in terms of Thermodynamic Potentials Expressions for $C_p - C_v$ To Show that the Ratio of Adiabatic Bulk Modulus to Isothermal Bulk Modulus Equals C_p / C_v Clausius – Clapeyron Equation Joule Thomson's Porous Plug Experiment Production of Low Temperatures by Adiabatic Demagnetization 3.10.1 Principle 62	45 48 49 51 52 53 55 56 58
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	General Relations for a Homogeneous Substance (Maxwell's Relation) Derivation of Thermodynamic Variables in terms of Thermodynamic Potentials Gibbs – Helmholtz Equations TdS Equations Specific Heat at Constant Volume and Constant Pressure in terms of Thermodynamic Potentials Expressions for $C_p - C_v$ To Show that the Ratio of Adiabatic Bulk Modulus to Isothermal Bulk Modulus Equals C_p / C_v Clausius – Clapeyron Equation Joule Thomson's Porous Plug Experiment Production of Low Temperatures by Adiabatic Demagnetization 3.10.1 Principle 62 3.10.2 Theory 63	45 48 49 51 52 53 55 56 58
	3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 3.10	General Relations for a Homogeneous Substance (Maxwell's Relation) Derivation of Thermodynamic Variables in terms of Thermodynamic Potentials Gibbs – Helmholtz Equations TdS Equations Specific Heat at Constant Volume and Constant Pressure in terms of Thermodynamic Potentials Expressions for $C_p - C_v$ To Show that the Ratio of Adiabatic Bulk Modulus to Isothermal Bulk Modulus Equals C_p / C_v Clausius – Clapeyron Equation Joule Thomson's Porous Plug Experiment Production of Low Temperatures by Adiabatic Demagnetization 3.10.1 Principle 62 3.10.2 Theory 63 3.10.3 Experimental Method 65	45 48 49 51 52 53 55 56 58 61
	3.1 3.2 3.3 3.4 3.5 3.6 3.7	General Relations for a Homogeneous Substance (Maxwell's Relation) Derivation of Thermodynamic Variables in terms of Thermodynamic Potentials Gibbs – Helmholtz Equations TdS Equations Specific Heat at Constant Volume and Constant Pressure in terms of Thermodynamic Potentials Expressions for $C_p - C_v$ To Show that the Ratio of Adiabatic Bulk Modulus to Isothermal Bulk Modulus Equals C_p / C_v Clausius – Clapeyron Equation Joule Thomson's Porous Plug Experiment Production of Low Temperatures by Adiabatic Demagnetization 3.10.1 Principle 62 3.10.2 Theory 63	45 48 49 51 52 53 55 56 58

CHAPTER - 4	THE STATISTICAL BASIS OF THERMODYNAMICS	73-112
4.1	Introduction	73
4.2	The Macroscopic and the Microscopic States	73
4.3	Probabilistic Basis of Statistical Mechanics	74
	4.3.1 Statistical Ensembles 74	
	4.3.2 Phase Space and Ensemble 75	
4.4	Division of Phase-Space into Phase-Cells	77
	4.4.1 Specification of the State of a System 78	
4.5	Linear Harmonic Oscillator as an Example of Phase Space	79
	4.5.1 The Phase Space and Quantum States 80	
4.6	Statistical Postulates	81
4.7	Number of States Accessible to a Macroscopic System	82
4.8	Statistical Ensembles	84
4.9	The Thermodynamic Probability	86
4.10	4.9.1. The Mathematical Probability 88	
4.10	Contact Between Statistics and Thermodynamics, Physical	00
4.11	Significance of $\Omega(N, V, E)$ The H-Theorem	88
4.11	Boltzmann's Theorem	91
4.13	Liouville's Theorem	92 94
4.14	Principle of Conservation of Density in Phase and Principle of	94
7.17	Conservation of Extension in Phase	96
4.15	Stirling's Approximation	97
4.16	Random Walk Problem	99
4.17	Conditions for Equilibrium	101
4.18	Connection between Statistical and Thermodynamic Quantities	104
4.19	Chemical Potential	107
4.20	Phase Equilibrium and Gibbs Phase Rule	108
	Questions	112
CHAPTER - 5	MICROCANONICAL ENSEMBLE	113-124
5.1	Introduction	113
5.2	Microcanonical Distribution	114
5.3	Entropy	116
5.4	Ideal Gases in Micro-canonical Ensemble	117
	5.4.1 Boltzmann Gas (Distinguishable particles) 119	
	5.4.2 Bose Gas (Indistinguishable particles) 119	
	5.4.3 Fermi Gas (Indistinguishable particles) 119	
	5.4.4 Statistical Distribution Laws 120	
	5.4.5 Evaluation of Constants α and β 121	

5.5	Entropy of a Perfect Gas in Microcanonical Ensemble Questions	124 124
CHARTER 6	CLASSICAL STATISTICS AND CANONICAL DISTRIBUTION	105 100
CHAPIER 6		125-180
6.1	Distinguishablity	125
6.2	Maxwell Boltzmann Distribution Formula	125
6.3	Partition Function	130
	6.3.1 Partition Function for a Gas Molecule 131	
	6.3.2 For an Ideal Gas having N Molecules 132	400
6.4	Statistical Interpretation of Basic Thermodynamic Variables	133
6.5	Thermodynamic Quantities for Ideal Gas	134
6.6 6.7	Partition Function and Thermodynamic Quantities	135
0.7	Maxwell Boltzmann Law of Distribution of Velocities in an Ideal Gas 6.7.1 Discussion of Velocity Distribution Function 140	137
	6.7.2 Maxwell-Boltzmann Law of Distribution of Speeds 143	
6.8	Maxwell Boltzmann's Energy Distribution Law	146
6.9	Principle of Equipartition of Energy	150
6.10	System in Contact with a Heat Reservoir (Canonical Distribution)	152
6.11	Gibb's Paradox	154
6.12	Deviations from the Ideal State (Imperfect Gases)	156
6.13	van der Waals Equation of State (Real Gases)	157
6.14	The Law of Corresponding States	161
6.15	Langevin's Theory of Paramagnetism	162
6.16	Molecular Partition Functions	164
	6.16.1 Relating Z to z for an Ideal Gas 165	
	6.16.2 Molecular Energy Levels 165	
6.17	Translational Partition Function	166
6.18	Rotational Partition Function (Diatomic Molecule)	167
6.19	Vibrational Partition Function	171
6.20	The Rotational States of H ₂	172
6.21	Contribution of Rotational Motion to the Specific Heat	172
6.22	Contribution of Vibrational Motion to the Specific Heat	174
6.23	Equivalence of Canonical and Microcanonical Ensembles	177
6.24	Virial Coefficients for a van der Waals Gas	177
	Questions	179
CHAPTER - 7	GRAND CANONICAL ENSEMBLE	181-195
7.1	Introduction	181
7.2	Grand Canonical Partition Function	181

7.3	Grand Canonical Distribution	183
7.4	The Grand Partition Function and Thermodynamic Quantities	183
7.5	Perfect Gas in Grand Canonical Ensemble, Grand Potential Ω	185
7.6	The Partition Function and Grand Partition Function for Ideal Gases	189
7.7	Landau Diamagnetism	191
	Questions	194
CHAPTER - 8	QUANTUM STATISTICAL MECHANICS	196-252
8.1	Introduction (Indistinguishability of Particles)	196
8.2	Postulates of Quantum Statistical Mechanics	197
8.3	Density Matrix	199
	8.3.1 Quantum Mechanical Analogue of Classical	
	Liouville's Theorem 201	
8.4	Condition for Statistical Equilibrium	202
8.5	Density Operators for Various Ensembles in Quantum	
	Statistical Mechanics	203
	8.5.1 Microcanonical Ensemble 203	
	8.5.2 Canonical Ensemble 203	
	8.5.3 Grand Canonical Ensemble 204	
8.6	Bose-Einstein Grand Partition Function and Distribution Law	204
8.7	Fermi Dirac Grand Partition Function and Distribution Law	205
8.8	The Boltzmann Limit of Boson and Fermion Gases	206
8.9	Equation of State for an Ideal Gas	207
8.10	Ideal Bose-Einstein Gas	208
8.11	Bose-Einstein Condensation	210
8.12	Black Body Radiation (Photon Gas)	215
8.13	Debye's Model of Heat Capacity of Solids	218
8.14	Liquid Helium	223
8.15	Some Peculiar Properties of He II	225
8.16	Tisza's Two Fluid Model for Liquid He II	227
8.17	Second Sound in He II	228
8.18	Landau's Theory of Liquid He II	231
8.19	Ideal Fermi Gas	235
8.20	Richardson-Dushmann Equation for Thermionic Emission	244
8.21	Free Electron Theory of Metals	246
	8.21.1 Specific Heat Anomaly of Metals 248	
8.22	Pauli Paramagnetism	249
	Questions	251

CHAPTER - 9	PHASE TRANSITIONS 2	253-287
9.1	Introduction	253
9.2	Phase Transitions	253
9.3	Conditions for Phase Equilibrium	254
9.4	First Order Phase Transition: The Clausius Clapeyron Equation	256
9.5	Second Order Phase Transitions	260
9.6	The Critical Exponents	262
9.7	Ising Model of Phase Transitions	264
9.8	Ising Model in the Zeroth Approximation (Bragg-Williams Approximation	
9.9	One-Dimensional Ising Model	272
9.10	Ginzburg Landau Theory of Phase Transitions	274
9.11	Critical Exponents and Scaling Laws	277
9.12	The Landau Free Energy	278
0.40	9.12.1 Mathematical Digression 279	
9.13	Mean Field Theory	279
9.14	Breakdown of Mean Field Theory	282
9.15	The Scaling Hypothesis and Dimensional Analysis	284
9.16	Two Dimensional Ising Model	285
	Questions	287
CHAPTER - 10) FLUCTUATIONS 2	288-302
10.1	Introduction	288
10.2	Fluctuations in Energy	289
10.3	Fluctuations in Pressure	291
10.4	Fluctuations in Volume	292
10.5	Fluctuations in Concentration	293
10.6	Brownian Motion (Langevin's Theory)	295
10.7	Fluctuation Dissipation Theorem	296
10.8	Motion due to Fluctuating Force (The Fokker-Planck Equation)	298
10.9	Solution of Fokker-Planck Equation	300
	Questions	302
CHAPTER - 11	IRREVERSIBLE PROCESSES	303-307
11.1	Onsager Relations	303
11.2	Proof of Onsager Reciprocal Relations	305
	Questions	307
CHAPTER - 12	P TRANSPORT PHENOMENA (DIFFUSION)	808-317
12.1	Introduction	308
12.2	What is Transport?	308

12.3 12.4 12.5	Diffusion (Fick's First Law) The Time Evolution of a Concentration Gradient (Fick's Second Law) Solution to Fick's Second Law Questions	309 311 313 317
Appendix A:	Evaluation of the Integral $\int_{-\infty}^{+\infty} e^{-x^2} dx$	318
Appendix B:	Evaluation of the Integrals of the Form $\int\limits_{0}^{\infty}e^{-\alpha x^{2}}x^{n}dx$	320
Appendix C:	Some Useful Integrals	321
Appendix D:	Stirling's Formula	323
References		324
Index		325