Edited by Paul T. Anastas

WILEY-VCH

Green Catalysis

HEMISTRY

Volume 1: Homogeneous Catalysis

Volume Editor: Robert H. Crabtree

Contents

About the Editors XIII

	List of Contributors XV
1	Atom Economy – Principles and Some Examples 1
	Audrey Moores
1.1	Introduction 1
1.2	Principle of Atom Economy 2
1.2.1	Atom Economy: a Pillar of Green Chemistry 2
1,2.2	Principle and Criteria 3
1.23	Impact of Atom Economy on the Chemical Industry 5
1.2.4	Atom Economy Tool Box 5
1.3	Atom Economical by Design Examples of Reactions Relying on C-H
	Activation 6
1.3.1	Tandem Reactions Involving Hydrogen Transfer 7
1.3.2	Selective C-H Activation for C-C Bond Formation 9
1.4	Conclusion 12
	References 13
2	Catalysis Involving Fluorous Phases: Fundamentals and Directions
	for Greener Methodologies 17
	John A. Gladysz
2.1	Introduction 17
2.2	Directions for Greener Fluorous Methodologies 19
2.3	Solvents for Fluorous Chemistry 21
2.4	Ponytails and Partition Coefficients 23
2.5	Specific Examples of Catalyst Recovery that Exploit Temperature-
	dependent Solubilities 24
2.5.1	Two Early Examples 24
2.5.2	First Examples from the Author's Laboratory 28
2.5.3	Concurrent Work by Ishihara and Yamamoto 28
2.5.4	Additional Examples from Other Research Groups 28

2.5.5	Additional Examples from the Author's Laboratory 29
2.6	Specific Examples of Catalyst Recovery that Exploit Fluorous Solid
	Phases 30
2.6.1	Fluoropolymer Supports 30
2.6.2	Fluorous Silica Gel Supports 32
2.6.3	Approaches Involving CO ₂ Pressure 34
2.6.4	Fluorous Solid-phase Extractions 34
2.7	Summary and Perspective 35
	References 36
3	Chemistry and Applications of Iron-TAML Catalysts in Green
	Oxidation Processes Based on Hydrogen Peroxide 39
	Terrence J. Collins, Sushil K. Khetan, and Alexander D. Ryabov
3.1	Introduction 39
3.2	Properties of Fe-TAMLs and Mechanisms of Oxidation
	with Hydrogen Peroxide 40
3.2.1	Properties of Tetraamido Macrocyclic Iron(III) Complexes
	in the Solid State and in Water 40
3.2.1.1	Solid-State Structure and Speciation in Water 40
3.2.1.2	Binding of Axial Ligands in Water 42
3.2.2	Demetalation of Fe–TAMLs 45
3.2.2.1	Induced by the Proton (Specific Acid) 45
3.2.2.2	Induced by General Acids 46
3.2.3	Understanding Mechanisms of Catalysis by Fe-TAML Activators of
	Hydrogen Peroxide 48
3.2.3.1	General Mechanism 48
3.2.3.2	Mechanism of Benzoyl Peroxide Activation 50
3.2.3.3	Nature of Oxidized TAMLs: Hypotheses and Facts 51
3.2.4	The Activity-Stability Parameterization of Homogeneous Green
	Oxidation Catalysts 54
3.2.4.1	Kinetic Model for Parameterization 54
3.2.4.2	Model Verifications 59
3.3	Applications of Fe–TAMLs 61
3.3.1	Degradation of Phosphorothioate and Phosphate Esters 61
3.3.1.1	Total Degradation of Organophosphorus (OP) Pesticides 61
3.3.1.2	Decontamination of Chemical Warfare Agents 63
3.3.2	Sulfoxidation Reactions 64
3.3.2.1	Reactions of Organic Sulfides 64
3.3.2.2	Decontamination of Sulfur Mustard 64
3.3.2.3	Removal of Benzothiophene and Dibenzothiophenes from Diesel 65
3.3.3	Breaking of Disulfide Bonds and the Likely Significance for the
	Disinfection of Spores 66
3.3.3.1	Oxidative Rupture of Organic Disulfides 66
3.3.3.2	Deactivation of Microbial Pathogens 66
3.3.4	Oxidative Degradation of Phenols 67

3.3.4.1 3.3.4.2 3.3.5	Total Degradation of Trichloro- and Pentachlorophenols 67 Total Degradation of Nitrophenols 68 Degradation of Emerging Micropollutants 69
3.3.5.1	Endocrine-disrupting Compounds 70
3.3.5.2	Degradation of Pharmaceutical Active Ingredients (PAIs) 70
3.3.6	Bleaching of Azo Dyes 71
3.3.7	Pulp Bleaching and Craft Mill Effluent Treatment (P_{Fe} Process) 72
3.4	Conclusion 73
	References 74
4	Microwave-Accelerated Homogeneous Catalysis in Water 79 Luke R. Odell and Mats Larhed
4.1	Introduction 79
4.1.1	Microwave Heating 79
4.1.2	Water as a Green Reaction Medium 81
4.1.3	Homogeneous Transition Metal Catalysis 81
4.1.4	Microwave-Assisted Metal Catalysis in Water 82
4.2	Suzuki–Miyaura Reactions 82
4.3	The Stille Reaction 85
4.4	The Hiyama Cross-Coupling Reaction 86
4.5	The Heck Reaction 86
4.6	Carbonylation Reactions 88
4.7	The Sonogashira Reaction 90
4.8	Aryl–Nitrogen Couplings 91
4.9	Aryl–Oxygen Couplings 92
4.10	Miscellaneous Transformations 92
4.11	Conclusion 94
	References 95
5	Ionic Liquids and Catalysis: the IFP Biphasic Difasol Process 101 Hélène Olivier-Bourbigou, Frédéric Favre, Alain Forestière, and François Hugues
5.1	Introduction 101
5.2	The Solvent in Catalytic Reactions 102
5.2.1	Non-Aqueous Ionic Liquids 103
5.2.2	Applications of Non-Aqueous Ionic Liquids in Catalysis 104
5.3	The Catalytic Oligomerization of Olefins 104
5.3.1	The Homogeneous Dimersol Process 106
5.3.1.1	The Reaction 106
5.3.1.2	The Process 107
5.3.1.3	Effect of Some Parameters 108
5.3.1.4	Process Performance: the Case of Dimersol X (Transformation
	of Butenes) 109
5.3.1.5	Economics of the Dimersol X Process 109
5.3.1.6	Dimersol Process Limitations 110

5.3.2	The Biphasic Approach 110
5.3.2.1	The Choice of the Ionic Liquid 110
5.3.2.2	Production of the Ionic Liquid 113
5.4	The Biphasic Difasol Process 113
5.4.1	The Biphasic Transformation of Butenes (Pilot Development) 114
5.4.1.1	The Difasol Process: Different Process Schemes and Estimated
	Performances 115
5.4.1.2	Economics of the Difasol Process 118
5.4.2	The Biphasic Transformation of Propylene 119
5.5	Conclusion 124
	References 124
6	Immobilization and Compartmentalization of Homogeneous
	Catalysts 127
	Christian Müller and Dieter Vogt
6.1	Introduction 127
6.2	Soluble Dendrimer-bound Homogeneous Catalysts 128
6.2.1	Covalently Linked Dendrimer-bound Catalysts 128
6.2.1.1	Carbosilane Dendrimers as Soluble Supports 129
6.2.1.2	Poly(Benzyl Ether) Dendrimers as Soluble Supports 132
6.2.1.3	DAB Dendrimers as Soluble Supports 133
6.2.1.4	PAMAM Dendrimers as Soluble Supports 134
6.2.1.5	PPI Dendrimers as Soluble Supports 134
6.2.2	Non-covalently Linked Dendrimer-bound Catalysts 136
6.3	Polymer-bound Homogeneous Catalysts 138
6.3.1	Covalently Linked Polymer-bound Catalysts 138
6.3.1.1	Molecular Weight Enlargement for Continuous Homogeneous
	Catalysis 138
6.3.1.2	Soluble Polymer-supported Catalysts for Liquid-Liquid Recovery
	of Catalysts 144
6.3.2	Electrostatically Bound Catalysts 146
6.4	Conclusion and Outlook 149
	References 149
7	Industrial Applications of Homogeneous Enantioselective Catalysts 153
	Hans-Ulrich Blaser, Garrett Hoge, Benoît Pugin, and Felix Spindler
7.1	Introduction and Scope 153
7.2	Critical Factors for the Technical Application of Homogeneous
	Enantioselective Catalysts 155
7.2.1	Characteristics of the Manufacture of Enantiomerically Enriched
	Products 155
7.2.2	Characteristics of Enantioselective Catalytic Processes 156
7.2.3	Critical Factors for the Application of Enantioselective
	Catalysts 156
7.2.4	Classification of Enantioselective Transformations 157

	7 1 1 1 1 Dunasan Con 1 C
7.3	Industrial Processes: General Comments 157
7.4	Hydrogenation of C=C Bonds 159
7.4.1	Hydrogenation of Dehydro-α-amino Acid Derivatives 159
7.4.1.1	ь-Dopa (Monsanto, VEB Isis-Chemie) 159
7.4.1.2	Aspartame (Enichem/Anic, Degussa) 161
7.4.1.3	Various Pilot- and Bench-Scale Processes for the Synthesis of α-Amino
	Acid Derivatives 161
7.4.2	Hydrogenation of Dehydro-β-amino Acid Derivatives 163
7.4.2.1	Sitagliptin (Merck) 164
7.4.3	Hydrogenation of Simple Enamides and Enol Acetates 164
7.4.4	Hydrogenation of Itaconic Acid Derivatives 166
7.4.5	Hydrogenation of Allylic Alcohols and α,β-Unsaturated Acids 167
7.4.5.1	Hydrogenation of Allylic Alcohols 167
7.4.5.2	Hydrogenation of α,β-Unsaturated Acids 168
7.4.5.3	Hydrogenation for Synthon A of Aliskiren (Speedel/Novartis) 169
7.4.6	Hydrogenation of Miscellaneous C=C Systems 171
7.4.6.1	Hydrogenation of a Biotin Intermediate (Lonza) 171
7.4.6.2	Synthesis of (+)-Methyl cis-Dihydrojasmonate (Firmenich) 172
7.4.6.3	Intermediate for Tipranavir 172
7.4.6.4	Intermediate for Candoxatril 173
7.4.6.5	Intermediate for Pregabalin 173
7. 5	Hydrogenation of C=O Bonds 175
7.5.1	Hydrogenation of α-Functionalized Ketones 175
7.5.2	Hydrogenation of β-Functionalized Ketones 177
7.5.3	Hydrogenation of Aromatic Ketones 178
7.6	Hydrogenation of C=N Bonds 181
7.6.1	(S)-Metolachlor Process 181
7.7	Oxidation Processes 183
7.7.1	Sulfide Oxidation 183
7.7.1.1	Esomeprazole (AstraZeneca) 183
7.7.2	Sharpless Epoxidation 185
7.7.2.1	Glycidol (PPG-Sipsy) 185
7.7.2.2	Disparlure (J.T. Baker) 185
7.7.3	Jacobsen Epoxidation 186
7.7.3.1	Indene Oxide (ChiRex) 186
7.7.4	Sharpless Dihydroxylation (AD) and Aminohydroxylation 187
7.8	Miscellaneous Transformations (Isomerization, Addition Reactions to
	C=C, C=O and C=N Bonds, Opening of Oxacycles) 188
7.8.1	Isomerization, Allylic Alkylation 188
7.8.1.1	(-)-Menthol Process (Takasago) 188
7.8.1.2	Various Alkylation Reactions 189
7.8.2	Addition Reactions to C=C Bonds 189
7.8.2.1	Cilastatin (Sumitomo) 190
7.8.3	Addition Reactions to C=O Bonds 190
7.8.4	Addition Reactions to C=N Bonds 192

7.8.5 7.9	Ring-opening Reactions of Oxacycles 193 Conclusions and Future Developments 195 References 196
8	Hydrogenation for C–C Bond Formation 205 John F. Bower and Michael J. Krische
8.1	By-product-free C–C Coupling and the Departure from Preformed
	Organometallic Reagents 205
8.2	Hydrogenative Vinylation of Carbonyl Compounds and Imines 210
8.3	Hydrogenative Allylation of Carbonyl Compounds 217
8.4	Hydrogenative Aldol and Mannich Additions 224
8.5	Hydrogenative Acyl Substitution (Reductive Hydroacylation) 233
8.6	Hydrogenative Carbocyclization 236
8.7	Future Directions 240
	References 241
9	Organocatalysis 255
-	Isabelle McCort-Tranchepain, Morgane Petit, and Peter I. Dalko
9.1	Introduction 255
9.2	Catalysts 256
9.2.1	Catalyst Functions 256
9.2.1.1	Brønsted Acids 256
9.2.1.2	Lewis acids 257
9.2.1.3	Brønsted Bases 258
9.2.1.4	Lewis Bases 258
9.2.2	Catalyst Structures 258
9.2.2.1	Privileged Catalysts 258
9.2.2.2	Synthetic Oligopeptides and Peptide Analogs 263
9.3	Reactions 264
9.3.1	Nucleophilic Additions to C=O 264
9.3.1.1	Aldol- and Knoevenagel-type Additions 264
9.3.1.2	Allylation Reactions 269
9.3.1.3	Nitroaldol (Henry) Reactions 269
9.3.1.4	Hydrocyanation 270
9.3.1.5	The Morita–Baylis–Hillman (MBH) Reaction 271
9.3.1.6	Asymmetric Acyl Transfer Reactions 273
9.3.2	Nucleophilic Additions to C=N 276
9.3.2.1	Mannich-type Reactions 276
9.3.2.2	The Nitro-Mannich (Aza-Henry) Reaction 279
9.3.2.3	The Asymmetric Strecker Reaction 280
9.3.2.4	Pictet–Spengler-type Cyclizations 281
9.3.2.5	Reduction of Ketimines 282
9.3.3	Additions to Alkenes 282
9.3.3.1	Michael Addition 282
9.3.3.2	Cyclopropanation 289

9.3.3.3	Epoxidation of Alkenes 291
9.3.3.4	Cycloaddition reactions 295
9.3.3.5	Transfer Hydrogenation of Alkenes 301
9.3.4	Organocatalytic Multicomponent and Cascade Reactions 302
9.3.4.1	Single Catalyst-mediated Domino Reactions 302
9.3.4.2	Multicatalyst Cascade Reactions 307
9.4	Conclusion 309
	References 309
10	Palladacycles in Catalysis 319
	Jairton Dupont and Fabricio R. Flores
10.1	Introduction 319
10.2	Catalyst Precursors for C-C and C-X (Heteroatom) Coupling
	Reactions 320
10.2.1	Heck-Mirozoki Coupling 321
10.2.2	Suzuki Coupling 326
10.2.3	Stille, Kumada and Negishi Coupling 328
10.2.4	Buchwald-Hartwig Amination 329
10.2.5	Sonogashira Coupling 330
10.2.6	Other Cross-coupling Reactions 332
10.3	Other Catalytic Reactions Catalyzed by Palladacycles 333
10,3.1	Asymmetric Rearrangements 333
10.3.2	Aldol Condensations and Related Reactions 334
10.3.3	Oxidation, Telomerization and Substitution Reactions 336
10.4	Conclusion 337
	References 338
11	Homogeneous Catalyst Design for the Synthesis of Aliphatic
	Polycarbonates and Polyesters 343
	Geoffrey W. Coates and Ryan C. Jeske
11.1	Introduction 343
11.2	Synthesis of Aliphatic Polycarbonates from Epoxides and Carbon
	Dioxide 344
11.2.1	Background 346
11.2.2	Chromium Catalysts 348
11.2.3	Cobalt Catalysts for Epoxide–CO ₂ Copolymerization 352
11.2.4	Zinc Catalysts for Epoxide–CO ₂ Copolymerization 354
11.2.4.1	Zinc Phenoxides for Epoxide–CO ₂ Copolymerization 354
11.2.4.2	Single-site β-Diiminate Zinc Catalysts for Epoxide–CO ₂ Coupling 355
11.2.4.3	Zinc Catalysts for Asymmetric CHO-CO ₂ Copolymerization 359
11.3	Synthesis of Aliphatic Polyesters 360
11.3.1	Synthesis of Poly(lactic Acid) 361
11.3.1.1	Background 361
11.3.1.2	Aluminum Catalysts for the Synthesis of PLA 362
11.3.1.3	Zinc Catalysts for the Synthesis of PLA 364

11.3.1.4	Germanium Catalysts for the Synthesis of PLA 365
11.3.1.5	Metal-free Catalysts for the Synthesis of PLA 365
11.3.2	Synthesis of Poly(hydroxyalkanoate)s 366
11.3.3	ROP of Other Cyclic Esters 367
11.3.4	Copolymerization of Epoxides and Cyclic Anhydrides 368
11.3.5	Summary 370
	References 370
12	The Aerobic Oxidation of p-Xylene to Terephthalic acid: a Classic
	Case of Green Chemistry in Action 375
	Walt Partenheimer and Martyn Poliakoff
12.1	Introduction 375
12.2	Methods of Making Terephthalic Acid Using Stoichiometric
	Reagents 377
12.3	Methods for Preparing Terephthalic Acid Using Cobalt Acetate and
	Dioxygen in Acetic Acid 378
12.4	Adding Bromide to Improve Terephthalic Acid Production Using Cobal
	and Manganese Acetates in Acetic Acid 385
12.5	Potential Processes Using Water as a Solvent 388
12.6	Summary and Final Comments 392
	References 394