Axel van Lamsweerde

Requirements Engineering

From System Goals to UML Models to Software Specifications

For	Foreword				
Pre	face			xxi	
Par	Part I Fundamentals of Requirements Engineering				
1	Sett	ing the S	cene	3	
	1.1	What is	s requirements engineering?	3	
		1.1.1	The problem world and the machine solution	4	
		1.1.2	Introducing our running case studies	6	
		1.1.3	The WHY, WHAT and WHO dimensions of requirements engineering	12	
		1.1.4	Types of statements involved in requirements engineering	17	
		1.1.5	Categories of requirements	23	
		1.1.6	The requirements lifecycle: Processes, actors and products	30	
		1.1.7	Target qualities and defects to avoid	35	
		1.1.8	Types of software projects	40	
		1.1.9	Requirements in the software lifecycle	42	
		1.1.10	The relationship of requirements engineering to other disciplines	45	
	1.2	Why e	ngineer requirements?	47	
		1.2.1	Facts, data and citations about the requirements problem	47	
		1.2.2	The role and stakes of requirements engineering	51	
	1.3	Obstac	les to good requirements engineering practice	52	
	1.4	Agile d	levelopment processes and requirements engineering	53	
		Summa	ary	55	
		Notes :	and Further Reading	56	
		Exercis	ses	58	

2	Don	main Understanding and Requirements Elicitation	61
	2.1	Identifying stakeholders and interacting with them	62
	2.2	Artefact-driven elicitation techniques	64
		2.2.1 Background study	64
		2.2.2 Data collection	65
		2.2.3 Questionnaires	65
		2.2.4 Repertory grids and card sorts for concept-driven acquisition	n 66
		2.2.5. Storyboards and scenarios for problem world exploration	67
		2.2.6 Mock-ups and prototypes for early feedback	70
		2.2.7 Knowledge reuse	72
	2.3	Stakeholder-driven elicitation techniques	76
		2.3.1 Interviews	77
		2.3.2 Observation and ethnographic studies	79
		2.3.3 Group sessions	80
	2.4	Conclusion	81
		Summary	82
		Notes and Further Reading	84
		Exercises	85
3	Req	uirements Evaluation	87
	3.1	Inconsistency management	88
		3.1.1 Types of inconsistency	88
		3.1.2 Handling inconsistencies	89
		3.1.3 Managing conflicts: A systematic process	90
	3.2	Risk analysis	93
		3.2.1 Types of risk	94
		3.2.2 Risk management	95
		3.2.3 Risk documentation	101
		3.2.4 Integrating risk management in the requirements lifecycle	102
	3.3	Evaluating alternative options for decision making	105
	3.4	Requirements prioritization	108
	3.5	Conclusion	112
		Summary	113
		Notes and Further Reading	114
		Exercises	116
4	_	uirements Specification and Documentation	119
	4.1	Free documentation in unrestricted natural language	120
	4.2	Disciplined documentation in structured natural language	121
		4.2.1 Local rules on writing statements	121
		4.2.2 Global rules on organizing the requirements document	124

	4.3	Use of	f diagrammatic notations	127
		4.3.1	System scope: context, problem and frame diagrams	127
		4.3.2	Conceptual structures: entity-relationship diagrams	130
		4.3.3	Activities and data: SADT diagrams	133
		4.3.4	Information flows: dataflow diagrams	134
		4.3.5	System operations: use case diagrams	136
		4.3.6	Interaction scenarios: event trace diagrams	136
		4.3.7	System behaviours: state machine diagrams	138
		4.3.8	Stimuli and responses: R-net diagrams	142
		4.3.9	Integrating multiple system views and multiview specification in UML	142
		4.3.10	Diagrammatic notations: Strengths and limitations	144
	4.4		l specification	145
		4.4.1	Logic as a basis for formalizing statements	146
		4.4.2	History-based specification	151
		4.4.3	State-based specification	155
		4.4.4	Event-based specification	163
		4.4.5	Algebraic specification	167
		4.4.6	Other specification paradigms	172
		4.4.7	Formal specification: strengths and limitations	173
	4.5	Conclu	usion	174
		Summ	ary	176
		Notes	and Further Reading	179
		Exerci	ses	183
5	Requ	uiremer	nts Quality Assurance	187
	5.1	Requir	rements inspections and reviews	188
		5.1.1	The requirements inspection process	188
		5.1.2	Inspection guidelines	190
		5.1.3	Requirements inspection checklists	191
		5.1.4	Conclusion	195
	5.2	Querie	es on a requirements database	196
	5.3	Requir	rements validation by specification animation	198
		5.3.1	Extracting an executable model from the specification	199
		5.3.2	Simulating the model	199
		5.3.3	Visualizing the simulation	200
		5.3.4	Conclusion	200
	5.4	Requi	rements verification through formal checks	202
		5.4.1	Language checks	202
		5.4.2	Dedicated consistency and completeness checks	203
		5.4.3	Model checking	205
		5.4.4	Theorem proving	208

	5.5	Summ Notes Exercise	ary and Further Reading
6	Regi	uiremer	nts Evolution
	6.1		me-space dimensions of evolution: Revisions and variants
	6.2		e anticipation
	6.3		bility management for evolution support
		6.3.1	Traceability links
		6.3.2	The traceability management process, its benefits and cost
		6.3.3	· · · · · · · · · · · · · · · · · · ·
		6.3.4	Determining an adequate cost-benefit trade-off for traceability management
	6.4	Chang	e control
		6.4.1	Change initiation
		6.4.2	Change evaluation and prioritization
		6.4.3	Change consolidation
	6.5	Runtin	ne monitoring of requirements and assumptions for dynamic change
	6.6	Concl	usion
		Summ	ary
		Notes	and Further Reading
		Exerci	ses
7	Goa	l Orient	ation in Requirements Engineering
	7.1	What a	are goals?
	7.2	The gr	ranularity of goals and their relationship to requirements and
		assum	ptions
	7.3	Goal t	ypes and categories
		7.3.1	Types of goal: behavioural goals vs soft goals
		7.3.2	Goal categories: Functional vs non-functional goals
	7.4		entral role of goals in the requirements engineering process
	7.5		e are goals coming from?
	7.6	The re	elationship of goals to other requirements-related products and
		proces	
			Goals and scenarios
		7.6.2	Intentional and operational specifications
		7.6.3	Goals and use cases
		7.6.4	Goals and model-checked properties
		7.6.5	Goal orientation and agent orientation
		7.6.6	Goal orientation and object orientation

Goal orientation and top-down analysis

7.6.7

260

		Summa	ary	279
		Notes	and Further Reading	280
		Exercis	ses	283
Pa	rt II	Buildin	g System Models for Requirements Engineering	287
8	Мо	delling S	ystem Objectives with Goal Diagrams	293
	8.1	Goal fe	eatures as model annotations	294
	8.2	Goal r	efinement	297
	8.3	Repres	senting conflicts among goals	301
	8.4	Conne	cting the goal model with other system views	302
	8.5	Modell	ling alternative options	303
		8.5.1	Alternative goal refinements	304
		8.5.2	Alternative responsibility assignments	305
	8.6	Goal d	liagrams as AND/OR graphs	307
	8.7	Docun	nenting goal refinements and assignments with annotations	308
	8.8	Buildir	ng goal models: Heuristic rules and reusable patterns	309
		8.8.1	Eliciting preliminary goals	309
		8.8.2	Identifying goals along refinement branches	311
		8.8.3	Delimiting the scope of the goal model	316
		8.8.4	Avoiding common pitfalls	317
		8.8.5	Reusing refinement patterns	319
		8.8.6	Reusing refinement trees associated with goal categories	326
		Summa	ary	328
		Notes	and Further Reading	329
		Exercis	ses	331
9	Ant	icipating	g What Could Go Wrong: Risk Analysis on Goal Models	335
	9.1	Goal c	obstruction by obstacles	336
		9.1.1	What are obstacles?	336
		9.1.2	Completeness of a set of obstacles	337
		9.1.3	Obstacle categories	338
	9.2	Model.	ling obstacles	339
		9.2.1	Obstacle diagrams	339
		9.2.2	Conditions on obstacle refinement	341
		9.2.3	Bottom-up propagation of obstructions in goal AND-refinements	342
		9.2.4	Annotating obstacle diagrams	343
	9.3	Obstac	cle analysis for a more robust goal model	344
		9.3.1	Identifying obstacles	344
		9.3.2	Evaluating obstacles	349
		9.3.3	Resolving obstacles in a modified goal model	349
		Summ	ary	353

		Notes:	and Further Reading	355
		Exercis	ses	356
10	Mode	elling C	onceptual Objects with Class Diagrams	359
	10.1	-	enting domain concepts by conceptual objects	360
		_	What are conceptual objects?	360
			Object instantiation: classes and current instances	361
			Types of conceptual object	362
			Object models as UML class diagrams	363
			Object features as model annotations	364
	10.2	Entities	· · · · · · · · · · · · · · · · · · ·	366
	10.3	Associa	ations	366
	10.4	Attribu	tes	371
	10.5	Built-ir	associations for structuring object models	373
			Object specialization	373
		10.5.2	Object aggregation	376
	10.6	More o	on class diagrams	377
		10.6.1	Derived attributes and associations	377
		10.6.2	OR-associations	378
		10.6.3	Ordered associations	379
		10.6.4	Associations of associations	379
	10.7	Heurist	tic rules for building object models	380
		10.7.1	Deriving pertinent and complete class diagrams from goal diagrams	380
		10.7.2	Object or attribute?	384
		10.7.3	Entity, association, agent or event?	384
		10.7.4	Attribute of a linked object or of the linking association?	385
		10.7.5	Aggregation or association?	386
		10.7.6	Specializing and generalizing concepts	386
		10.7.7	Avoiding common pitfalls	387
		Summa	ary	389
		Notes a	and Further Reading	391
		Exercis	ses	392
11	Mode	elling Sy	ystem Agents and Responsibilities	395
	11.1	What a	re agents?	396
	11.2	Charac	terizing system agents	397
		11.2.1	Basic features	397
		11.2.2	Agent capabilities	397
		11.2.3	Agent responsibilities and goal realizability	399
		11.2.4	Agents as operation performers	401
		11.2.5	Agent wishes and beliefs	402
		11.2.6	Agent dependencies	403

	11.3	Representing agent models	405
		11.3.1 Agent diagrams and instance declarations	405
		11.3.2 Context diagrams	406
		11.3.3 Dependency diagrams	407
	11.4	Refinement of abstract agents	408
	11.5	Building agent models	411
		11.5.1 Heuristics for building agent diagrams from goal models	411
		11.5.2 Generating context diagrams from goal models	413
		Summary	415
		Notes and Further Reading	417
		Exercises	418
12	Mod	elling System Operations	421
	12.1	What are operations?	422
	12.2	Characterizing system operations	425
		12.2.1 Basic features	425
		12.2.2 Operation signature	425
		12.2.3 Domain pre- and post-conditions	426
		12.2.4 Operation performer	427
	12.3	Goal operationalization	427
		12.3.1 Required pre-, post- and trigger conditions for goal satisfaction	427
		12.3.2 Agent commitments	430
		12.3.3 Goal operationalization and satisfaction arguments	432
	12.4		434
	12.5	Representing operation models	435
		12.5.1 Operationalization diagrams	435
		12.5.2 UML use case diagrams	435
	12.6	Building operation models	437
		12.6.1 Heuristics for building operationalization diagrams	437
		12.6.2 Generating use case diagrams from operationalization diagrams	442
		Summary	442
		Notes and Further Reading	444
		Exercises	445
13		elling System Behaviours	449
	13.1	Modelling instance behaviours	450
		13.1.1 Scenarios as UML sequence diagrams	450
		13.1.2 Scenario refinement: Episodes and agent decomposition	452
	13.2	Modelling class behaviours	454
		13.2.1 State machines as UML state diagrams	455
		13.2.2 State machine refinement: Sequential and concurrent sub-states	459
	13.3	Building behaviour models	463

13.3.1 Elaborating relevant scenarios for good coverage

		13.3.2 Decorating scenarios with state conditions	467
		13.3.3 From scenarios to state machines	469
		13.3.4 From scenarios to goals	473
		13.3.5 From operationalized goals to state machines	475
		Summary	477
		Notes and Further Reading	480
		Exercises	481
14		rating Multiple System Views	485
	14.1	A meta-model for view integration	485
		14.1.1 Overall structure of the meta-model	487
		14.1.2 The goal meta-model	488
		14.1.3 The object meta-model	489
		14.1.4 The agent meta-model	490
		14.1.5 The operation meta-model	491
		14.1.6 The behaviour meta-model	492
	14.2	Inter-view consistency rules	493
	14.3	Grouping related view fragments into packages	496
		Summary	498
		Notes and Further Reading	498
		Exercises	499
15	A Go	al-Oriented Model-Building Method in Action	501
	15.1	Modelling the system-as-is	503
		15.1.1 Step 1: Build a preliminary goal model illustrated by scenarios	503
		15.1.2 Step 2: Derive a preliminary object model	506
	15.2	Modelling the system-to-be	507
		15.2.1 Step 3: Update the goal model with new goals illustrated by scenarios	507
		15.2.2 Step 4: Derive the updated object model	510
		15.2.3 Step 5: Analyse obstacles, threats and conflicts	512
		15.2.4 Step 6: Analyse responsibilities and build the agent model	515
		15.2.5 Step 7: Make choices among alternative options	517
		15.2.6 Step 8: Operationalize goals in the operation model	518
		15.2.7 Step 9: Build and analyse the behaviour model	521
	15.3	Handling model variants for product lines	524
		Summary	528
		Notes and Further Reading	529
		Exercises	529
Par	t III	Reasoning About System Models	535
		Reasoning About System Models -Formal Reasoning for Model Analysis and Exploitation	535 537

		16.1.1	Checking the structural consistency and completeness of the model
			Generation of other views for dedicated analyses
			Traceability management
		16.1.4	Analogical model reuse
	16.2	Semi-fo	ormal analysis of goal-oriented models
		16.2.1	Conflict analysis
		16.2.2	Heuristic identification of obstacles
		16.2.3	Threat analysis: From goal models to anti-goal models
	16.3	Reason	ing about alternative options
			Qualitative reasoning about alternatives
		16.3.2	Quantitative reasoning about alternatives
	16.4	Model-	driven generation of the requirements document
	16.5	Beyond	RE: From goal-oriented requirements to software architecture
			Deriving a software data architecture from the object model
		16.5.2	Deriving an abstract dataflow architecture from the agent and operation models
			Selecting an architectural style from architectural requirements
		16.5.4	Architectural refinement from quality requirements
		Summa	ry
			and Further Reading
		Exercise	es
17	Forn	nal Spec	ification of System Models
	17.1	A real-t	ime temporal logic for specifying model annotations
		17.1.1	State assertions
		17.1.2	Temporal assertions
		17.1.3	Real-time temporal constructs
	17.2	Specify	ing goals in the goal model
	17.3	Specify	ing descriptive properties in the object model
	17.4	Specify.	ing operationalizations in the operation model
	17.5	Back to	the system's semantic picture
		Summa	•
			and Further Reading
		Exercise	es
18	Forn	nal Reas	oning for Specification Construction and Analysis
	18.1	Checkii	ng goal refinements
		18.1.1	Using a theorem prover
		18.1.2	Formal refinement patterns
		18.1.3	Using bounded SAT solvers
	18.2	Derivin	g goal operationalizations

18.2.1 Using bounded SAT solvers

	18.2.2	Formal operationalization patterns	610
18.3	Genera	ating obstacles for risk analysis	613
	18.3.1	Regressing obstructions through domain properties	614
	18.3.2	Using formal obstruction patterns	617
18.4	Genera	ating anti-goals for security analysis	618
	18.4.1	Specifying security goals	618
	18.4.2	Identifying security goals and initial anti-goals	620
	18.4.3	Refining anti-goals	621
18.5	Formal	l conflict analysis	622
	18.5.1	Deriving boundary conditions for conflict	623
	18.5.2	Formal resolution of divergences	625
18.6	Synthe	sizing behaviour models for animation and model checking	627
	18.6.1	Goal-driven model synthesis	628
	18.6.2	Scenario-driven model synthesis	628
	Summa	ary	635
	Notes :	and Further Reading	636
	Exercis	ses	637
Bibliogra	phy		641
ndex			669