
Chemorheology of Polymers

From Fundamental Principles to Reactive Processing

Peter J. Halley and Graeme A. George

Contents

	Prej	face	page ix
1	Chei	mistry and structure of reactive polymers	1
	1.1	The physical structure of polymers	1
		1.1.1 Linear polymers as freely jointed chains	2
		1.1.2 Conformations of linear hydrocarbon polymers	5
		1.1.3 Molar mass and molar-mass distribution	8
		1.1.4 Development of the solid state from the melt	11
	1.2	Controlled molecular architecture	23
		1.2.1 Stepwise polymerization	24
		1.2.2 Different polymer architectures achieved by step polymerization	36
		1.2.3 Addition polymerization	59
		1.2.4 Obtaining different polymer architectures by addition polymerization	n 85
		1.2.5 Networks from addition polymerization	99
	1.3	Polymer blends and composites	105
		1.3.1 Miscibility of polymers	106
		1.3.2 Phase-separation phenomena	111
		1.3.3 Interpénetrating networks	126
	1.4	Degradation and stabilization	127
		1.4.1 Free-radical formation during melt processing	128
		1.4.2 Free-radical formation in the presence of oxygen	139
		1.4.3 Control of free-radical reactions during processing	149
	Ref	erences	162
2	Phys	sics and dynamics of reactive polymers	169
	2.1	Chapter rationale	169
	2.2	Polymer physics and dynamics	169
		2.2.1 Polymer physics and motion – early models	169
		2.2.2 Theories of polymer dynamics	170
	2.3	Introduction to the physics of reactive polymers	175
		2.3.1 Network polymers	176
		2.3.2 Reactively modified polymers	177
	2.4	Physical transitions in curing systems	179
		2.4.1 Gelation and vitrification	180
		2.4.2 Phase separation	181
		2.4.3 Time-temperature-transformation (TTT) diagrams	181

C-		-+-
UU	nte	шъ

Vİ

		2.4.4 Reactive systems without major transitions	186
	2.5	Physicochemical models of reactive polymers	186
		2.5.1 Network models	187
		2.5.2 Reactive polymer models	191
	Refo	erences	192
3	Cher	mical and physical analyses for reactive polymers	195
	3.1	Monitoring physical and chemical changes during reactive processing	195
	3.2	Differential scanning calorimetry (DSC)	196
		3.2.1 An outline of DSC theory	196
		3.2.2 Isothermal DSC experiments for polymer chemorheology	197
		3.2.3 Modulated DSC experiments for chemorheology	202
		3.2.4 Scanning DSC experiments for chemorheology	203
		3.2.5 Process-control parameters from time temperature superposition	206
		3.2.6 Kinetic models for network-formation from DSC	207
	3.3	Spectroscopic methods of analysis	208
		3.3.1 Information from spectroscopic methods	208
		3.3.2 Magnetic resonance spectroscopy	209
		3.3.3 Vibrational spectroscopy overview – selection rules	213
		3.3.4 Fourier-transform infrared (FT-IR) and sampling methods:	216
		transmission, reflection, emission, excitation	216
		3.3.5 Mid-infrared (MIR) analysis of polymer reactions	222
		3.3.6 Near-infrared (NIR) analysis of polymer reactions	235
		3.3.7 Raman-spectral analysis of polymer reactions	240
		3.3.8 UV-visible spectroscopy and fluorescence analysis of polymer react	
	2.4	3.3.9 Chemiluminescence and charge-recombination luminescence	255
	3.4	Remote spectroscopy	259
		3.4.1 Principles of fibre-optics	259
	2 =	3.4.2 Coupling of fibre-optics to reacting systems	263
	3.5	Chemometrics and statistical analysis of spectral data	271
		3.5.1 Multivariate curve resolution	272
		3.5.2 Multivariate calibration	275
	3.7	3.5.3 Other curve-resolution and calibration methods	280
	3.6	1 , , , , , , , , , , , , , , , , , , ,	282
		3.6.1 Torsional braid analysis	282
		3.6.2 Mechanical properties3.6.3 Dielectric properties	283 287
		3.6.3 Dielectric properties3.6.4 Rheology	292
		3.6.5 Other techniques	305
		3.6.6 Dual physicochemical analysis	311
	Ref	Serences	312
			004
4	Che	morheological techniques for reactive polymers	321
	4.1	Introduction	321
	4.2	Chemorheology	321

321

4.2.1 Fundamental chemorheology

Contents vii

	4.3	Chemoviscosity profiles	327			
		4.3.1 Chemoviscosity	327			
		4.3.2 Gel effects	336			
	4.4	Chemorheological techniques	336			
		4.4.1 Standards	338			
		4.4.2 Chemoviscosity profiles – shear-rate effects, $\eta_s = \eta_s(\gamma, T)$	338			
		4.4.3 Chemoviscosity profiles – cure effects, $\eta_c = \eta_c(a, T)$	342			
		4.4.4 Filler effects on viscosity: $\eta_{sr}(F)$ and $\eta_{c}(F)$	343			
		4.4.5 Chemoviscosity profiles – combined effects, $\eta_{\text{all}} = \eta_{\text{all}}(\gamma, a, T)$	344			
		4.4.6 Process parameters	344			
	4.5	Gelation techniques	345			
	Refe	prences	347			
5	Cher	morheology and chemorheological modelling	351			
	5.1	Introduction	351			
	5.2	Chemoviscosity and chemorheological models	351			
		5.2.1 Neat systems	351			
		5.2.2 Filled systems	357			
		5.2.3 Reactive-extrusion systems and elastomer/rubber-processing systems	370			
	5.3	Chemorheological models and process modelling	370			
	Refe	erences	371			
6	Indu	Industrial technologies, chemorheological modelling and process modelling				
		processing reactive polymers	375			
	6.1	Introduction	375			
	6.2	Casting	375			
		6.2.1 Process diagram and description	375			
		6.2.2 Quality-control tests and important process variables	375			
		6.2.3 Typical systems	376			
		6.2.4 Chemorheological and process modelling	376			
	6.3	Potting, encapsulation, sealing and foaming	378			
		6.3.1 Process diagram and description	378			
		6.3.2 Quality-control tests and important process variables	379			
		6.3.3 Typical systems	379			
		6.3.4 Chemorheological and process modelling	380			
	6.4	Thermoset extrusion	380			
		6.4.1 Extrusion	380			
	(=	6.4.2 Pultrusion	382			
	6.5	Reactive extrusion	385			
		6.5.1 Process diagram and description	385			
		6.5.2 Quality-control tests and important process variables	387			
		6.5.3 Typical systems	388			
		6.5.4 Chemorheological and process modelling	389			
	6.6	Moulding processes	391			
		6.6.1 Open-mould processes	391			
		6.6.2 Resin-transfer moulding	393			

Ca	าก	ŧρ	n	ts.
υı	,,,	uc	31	w

Viii

	6.6.3	Compression, SMC, DMC and BMC moulding	395
	6.6.4	Transfer moulding	397
	6.6.5	Reaction injection moulding	400
	6.6.6	Thermoset injection moulding	403
	6.6.7	Press moulding (propreg)	405
	6.6.8	Autoclave moulding (prepreg)	406
6.7	Rubbei	r mixing and processing	407
	6.7.1	Rubber mixing processes	407
	6.7.2	Rubber processing	409
6.8	High-e	413	
	6.8.1	Microwave processing	413
	6.8.2	Ultraviolet processing	415
	6.8.3	Gamma-irradiation processing	416
	6.8.4	Electron-beam-irradiation processing	417
6.9	Novel processing		420
	6.9.1	Rapid prototyping and manufacturing	420
	6.9.2	Microlithography	424
6.10	Real-1	426	
	6.10.1	Sensors for real-time process monitoring	426
	6.10.2	Real-time monitoring using fibre optics	429
Refe	rences		431
Glos	sary of	commonly used terms	435
Inde	x		440