

Energy Optimization in Process Systems

Stanisław Sieniutycz and Jacek Jeżowski

Contents

Pretace			XI
Acknowledg	ements		xix
Chapter 1:	Brief review of static optimization methods		
	1.1.	Introduction: Significance of Mathematical Models	1
	1.2.	Unconstrained Problems	4
	1.3.	Equality Constraints and Lagrange Multipliers	7
	1.4.	Methods of Mathematical Programming	11
	1.5.	Iterative Search Methods	13
	1.6.	On Some Stochastic Optimization Techniques	17
Chapter 2:	Dyna	amic optimization problems	45
	2.1.	Discrete Representations and Dynamic Programming Algorithms	45
	2.2.	Recurrence Equations	47
	2.3.	Discrete Processes Linear with Respect to the Time Interval	51
	2.4.	Discrete Algorithm of the Pontryagin's Type for Processes Linear in θ^N	55
	2.5.	Hamilton-Jacobi-Bellman Equations for Continuous Systems	58
	2.6.	Continuous Maximum Principle	70
	2.7.	Calculus of Variations	73
	2.8.	Viscosity Solutions and Non-smooth Analyses	76
	2.9.	Stochastic Control and Stochastic Maximum Principle	84
Chapter 3:	Energy limits for thermal engines and heat-pumps at steady states		85
	3.1.	Introduction: Role of Optimization in Determining Thermodynamic Limits	85
	3.2.	Classical Problem of Thermal Engine Driven by Heat Flux	90
	3.3.	Toward Work Limits in Sequential Systems	109
	3.4.	Energy Utilization and Heat-pumps	112
	3.5.	Thermal Separation Processes	116
	3.6.	Steady Chemical, Electrochemical and Other Systems	117
	3.7.	Limits in Living Systems	123
	3.8.	Final Remarks	124
Chapter 4:	Hamiltonian optimization of imperfect cascades		127
	4.1.	Basic Properties of Irreversible Cascade Operations with a Work Flux	127

	4.2.	Description of Imperfect Units in Terms of Carnot	422
	4.3.	Temperature Control	132
	4.4.	Single-stage Formulae in a Model of Cascade Operation	138
	4.5.	Work Optimization in Cascade by Discrete Maximum Principle	
	4.6.	Example	155
	4.7.	Continuous Imperfect System with Two Finite Reservoirs Final Remarks	157 164
Chapter 5:			
Chapter 5.		imum power from solar energy	167
	5.1.	Introducing Carnot Controls for Modeling Solar-assisted Operations	167
	5.2.	Thermodynamics of Radiation	175
	5.3.	Classical Exergy of Radiation	180
	5.4.	Flux of Classical Exergy	184
	5.5.	Efficiencies of Energy Conversion	186
	5.6.	Towards a Dissipative Exergy of Radiation at Flow	187
	5.7.	Basic Analytical Formulae of Steady Pseudo-Newtonian Model	190
	5.8.	Steady Non-Linear Models applying Stefan-Boltzmann Equation	192
	5.9.	Dynamical Theory for Pseudo-Newtonian Models	195
	5.10.		204
	5.11.		211
	5.12.	Tippioaches	212
Chapter 6:	Ham	ilton-Jacobi-Bellman theory of energysystems	215
	6.1.	Introduction	215
	6.2.	Dynamic Optimization of Power in a Finite-resource Process	216
	6.3.	Two Different Works and Finite-Rate Exergies	219
	6.4.	Some Aspects of Classical Analytical HJB Theory for	
	6.5.	Continuous Systems	223
	6.6.	HJB Equations for Non-Linear Power Generation Systems	225
	6.7.	Analytical Solutions in Systems with Linear Kinetics Extensions for Systems with Non-Linear Kinetics and	227
		Internal Dissipation	230
	6.8.	Generalized Exergies for Non-Linear Systems with Minimum Dissipation	232
	6.9.	Final Remarks	235
Chapter 7:	Numerical optimization in allocation, storage and recovery		
	ot the	ermal energy and resources	237
	7.1.	Introduction	237
	7.2.	A Discrete Model for a Non-Linear Problem of Maximum Power from Radiation	239

	7.3.	Non-Constant Hamiltonians and Convergence of Discrete DP Algorithms to Viscosity Solutions of HJB Equations	240
	7.4.	Dynamic Programming Equation for Maximum Power From Radiation	249
	7.5.	Discrete Approximations and Time Adjoint as a Lagrange Multiplier	250
	7.6.	Mean and Local Intensities in Discrete Processes	250
	7.7.	Legendre Transform and Original Work Function	259
	7.8.	Numerical Approaches Applying Dynamic Programming	261
	7.9.	Dimensionality Reduction in Dynamic Programming Algorithms	265
	7.10.	_	267
Chapter 8:	Optir	nal control of separation processes	271
•	8.1.	General Thermokinetic Issues	271
	8.2.	Thermodynamic Balances toward Minimum Heat or Work	273
	8.3.	Results for Irreversible Separations Driven by	2,/3
	0.0.	Work or Heat	279
	8.4.	Thermoeconomic Optimization of Thermal Drying with Fluidizing Solids	282
	8.5.	Solar Energy Application to Work-Assisted Drying	312
	8.6.	Concluding Remarks	320
Chapter 9:	Optir	nal decisions for chemical and electrochemical reactors	321
	9.1.	Introduction	321
	9.2.	Driving Forces in Transport Processes and Chemical Reactions	321
	9.3.	General Non-Linear Equations of Macrokinetics	324
	9.4.	Classical Chemical and Electrochemical Kinetics	325
	9.5.	Inclusion of Non-Linear Transport Phenomena	327
	9.6.	Continuous Description of Chemical (Electrochemical)	
	^ -	Kinetics and Transport Phenomena	329
	9.7.	Towards Power Production in Chemical Systems	331
	9.8.	Thermodynamics of Power Generation in Non-Isothermal Chemical Engines	334
	9.9.	Non-Isothermal Engines in Terms of Carnot Variables	338
	9.10.	Entropy Production in Steady Systems	340
	9.11.	Dissipative Availabilities in Dynamical Systems	341
	9.12.	Characteristics of Steady Isothermal Engines	343
	9.13.	Sequential Models for Dynamic Power Generators	351
	9.14.	A Computational Algorithm for Dynamical Process with Power Maximization	355
	9.15.	Results of Computations	358
	9.16.	-	359

	9.17.	Comparison of Chemical and Thermal Operations of	
		Power Production	360
		Fuel Cell Application	361
	9.19.	Final Remarks	365
Chapter 10:	Energ	gy limits and evolution in biological systems	367
	10.1.	Introduction	367
	10.2.	Energy and Size Limits	368
	10.3.	Toward a Quantitative Description of Development and Evolution of Species	375
	10.4.	Significance of Complexity and Entropy	378
	10.5.	Evolutions of Multiple Organs without Mutations	381
	10.6.	Organisms with Mutations or Specializations of Organs	383
	10.7.	A Variational Approach to the Dynamics of Evolution	384
	10.8.	Concluding Remarks	388
Chapter 11:	System	ms theory in thermal & chemical engineering	391
	11.1.	Introduction	391
	11.2.	System Energy Analyses	392
	11.3.	Mathematical Modeling of Industrial Energy Management	392
	11.4.	Linear Model of the Energy Balance for an Industrial Plant and its Applications	395
	11.5.	Non-Linear Mathematical Model of a Short-Term Balance of Industrial Energy System	399
	11.6.	Mathematical Optimization Model for the Preliminary Design of Industrial Energy Systems	401
	11.7.	Remarks on Diverse Methodologies and Link with Ecological Criteria	406
	11.8.	Control Thermodynamics for Explicitly Dynamical Systems	412
		Interface of Energy Limits, Structure Design, Thermoeconomics and Ecology	414
	11.10	. Towards the Thermoeconomics and Integration of	
		Heat Energy	425
Chapter 12:	Heat	integration within process integration	427
Chapter 13:	Maximum heat recovery and its consequences for process system		427
	design		437
		Introduction and Problem Formulation	437
	13.2.	1	439
		Problem Table (PR-T) Method	446
		Grand Composite Curve (GCC) Plot	450
		Special Topics in MER/MUC Calculations	454
	13.6.	Summary and Further Reading	458

Chapter 14:	largeting and supertargeting in heat exchanger network design		
	14.1. Targeting Stage in Overall Design Process	461	
	14.2. Basis of Sequential Approaches for HEN Targeting	462	
	14.3. Basis of Simultaneous Approaches for HEN Targeting	467	
Chapter 15:	Minimum utility cost (MUC) target by optimization approaches		
	15.1. Introduction and MER Problem Solution by Mathematical Programming	469	
	15.2. MUC Problem Solution Methods	472	
	15.3. Dual Matches	485	
	15.4. Minimum Utility Cost under Disturbances	488	
Chapter 16:	Minimum number of units (MNU) and minimum total surface area (MTA) targets		
	16.1. Introduction	495	
	16.2. Minimum Number of Matches (MNM) Target	496	
	16.3. Minimum Total Area for Matches (MTA-M) Target	515	
	16.4. Minimum Number of Shells (MNS) Target	521	
	16.5. Minimum Total Area for Shells (MTA-S) Target	525	
Chapter 17:	Simultaneous HEN targeting for total annual cost	533	
Chapter 18:	Heat exchanger network synthesis		
	18.1. Introduction	547	
	18.2. Sequential Approaches	548	
	18.3. Simultaneous Approaches to HEN Synthesis	566	
Chapter 19:	Heat exchanger network retrofit	583	
	19.1. Introduction	583	
	19.2. Network Pinch Method	586	
	19.3. Simultaneous Approaches for HEN Retrofit	596	
Chapter 20:	Approaches to water network design		
	20.1. Introduction	613	
	20.2. Mathematical Models and Data for Water Network Problem	617	
	20.3. Overview of Approaches in the Literature	621	
	References		
	Glossary of symbols		
	Index	735	