Physicochemical and EnvironmentalPlant Physiology

Force/length (σ) due to surface tension
(upward component = $\sigma \cos \alpha$)

Liquid of density ρ

Downward gravitational force ($\pi r^2 h \rho g$)

Park S. Nobel
Contents

Preface xiii
Symbols and Abbreviations xv

1. Cells and Diffusion 3

1.1. Cell Structure 3
 1.1A. Generalized Plant Cell 3
 1.1B. Leaf Anatomy 5
 1.1C. Vascular Tissue 7
 1.1D. Root Anatomy 9

1.2. Diffusion 11
 1.2A. Fick’s First Law 12
 1.2B. Continuity Equation and Fick’s Second Law 14
 1.2C. Time–Distance Relation for Diffusion 16
 1.2D. Diffusion in Air 19

1.3. Membrane Structure 21
 1.3A. Membrane Models 21
 1.3B. Organelle Membranes 23

1.4. Membrane Permeability 25
 1.4A. Concentration Difference Across a Membrane 26
 1.4B. Permeability Coefficient 28
 1.4C. Diffusion and Cellular Concentration 29

1.5. Cell Walls 31
 1.5A. Chemistry and Morphology 33
 1.5B. Diffusion Across Cell Walls 34
 1.5C. Stress–Strain Relations of Cell Walls 37
 1.5D. Elastic Modulus, Viscoelasticity 39

1.6. Problems 40
1.7. References and Further Reading 42

2. Water 45

2.1. Physical Properties 46
 2.1A. Hydrogen Bonding—Thermal Relations 47
 2.1B. Surface Tension 49
 2.1C. Capillary Rise 50
 2.1D. Capillary Rise in the Xylem 53
2.1E. Tensile Strength, Viscosity
2.1F. Electrical Properties
2.2. Chemical Potential
2.2A. Free Energy and Chemical Potential
2.2B. Analysis of Chemical Potential
2.2C. Standard State
2.2D. Hydrostatic Pressure
2.2E. Water Activity and Osmotic Pressure
2.2F. Van't Hoff Relation
2.2G. Matric Pressure
2.2H. Water Potential
2.3. Central Vacuole and Chloroplasts
2.3A. Water Relations of the Central Vacuole
2.3B. Boyle–Van’t Hoff Relation
2.3C. Osmotic Responses of Chloroplasts
2.4. Water Potential and Plant Cells
2.4A. Incipient Plasmolysis
2.4B. Höffler Diagram and Pressure–Volume Curve
2.4C. Chemical Potential and Water Potential of Water Vapor
2.4D. Plant–Air Interface
2.4E. Pressure in the Cell Wall Water
2.4F. Water Flux
2.4G. Cell Growth
2.4H. Kinetics of Volume Changes
2.5. Problems
2.6. References and Further Reading

3. Solutes

3.1. Chemical Potential of Ions
3.1A. Electrical Potential
3.1B. Electroneutrality and Membrane Capacitance
3.1C. Activity Coefficients of Ions
3.1D. Nernst Potential
3.1E. Example of E_{N_k}
3.2. Fluxes and Diffusion Potentials
3.2A. Flux and Mobility
3.2B. Diffusion Potential in a Solution
3.2C. Membrane Fluxes
3.2D. Membrane Diffusion Potential—Goldman Equation
3.2E. Application of Goldman Equation
3.2F. Donnan Potential
3.3. Characteristics of Crossing Membranes
3.3A. Electroperiphasity
3.3B. Boltzmann Energy Distribution and Q_{10}, a Temperature Coefficient
3.3C. Activation Energy and Arrhenius Plots
3.3D. Ussing–Teorell Equation
3.3E. Example of Active Transport
4. Light

4.1. Wavelength and Energy

4.1A. Light Waves

4.1B. Energy of Light

4.1C. Illumination, Photon Flux Density, and Irradiance

4.1D. Sunlight

4.1E. Planck’s and Wien’s Formulae

4.2. Absorption of Light by Molecules

4.2A. Role of Electrons in Absorption Event

4.2B. Electron Spin and State Multiplicity

4.2C. Molecular Orbitals

4.2D. Photoisomerization

4.2E. Light Absorption by Chlorophyll

4.3. Deexcitation

4.3A. Fluorescence, Radiationless Transition, and Phosphorescence

4.3B. Competing Pathways for Deexcitation

4.3C. Lifetimes

4.3D. Quantum Yields

4.4. Absorption Spectra and Action Spectra

4.4A. Vibrational Sublevels

4.4B. The Franck–Condon Principle

4.4C. Absorption Bands, Absorption Coefficients, and Beer’s Law

4.4D. Application of Beer’s Law

4.4E. Conjugation

4.4F. Action Spectra

4.4G. Absorption and Action Spectra of Phytochrome
5. Photochemistry of Photosynthesis

5.1. Chlorophyll—Chemistry and Spectra
 5.1A. Types and Structures
 5.1B. Absorption and Fluorescence Emission Spectra
 5.1C. Absorption in Vivo—Polarized Light

5.2. Other Photosynthetic Pigments
 5.2A. Carotenoids
 5.2B. Phycobilins
 5.2C. General Comments

5.3. Excitation Transfers Among Photosynthetic Pigments
 5.3A. Pigments and the Photochemical Reaction
 5.3B. Resonance Transfer of Excitation
 5.3C. Specific Transfers of Excitation
 5.3D. Excitation Trapping

5.4. Groupings of Photosynthetic Pigments
 5.4A. Photon Processing
 5.4B. Excitation Processing
 5.4C. Photosynthetic Action Spectra and Enhancement Effects
 5.4D. Two Photosystems Plus Light-Harvesting Antennae

5.5. Electron Flow
 5.5A. Electron Flow Model
 5.5B. Components of the Electron Transfer Pathway
 5.5C. Types of Electron Flow
 5.5D. Assessing Photochemistry using Fluorescence
 5.5E. Photophosphorylation
 5.5F. Vectorial Aspects of Electron Flow

5.6. Problems

5.7. References and Further Reading

6. Bioenergetics

6.1. Gibbs Free Energy
 6.1A. Chemical Reactions and Equilibrium Constants
 6.1B. Interconversion of Chemical and Electrical Energy
 6.1C. Redox Potentials

6.2. Biological Energy Currencies
 6.2A. ATP—Structure and Reactions
 6.2B. Gibbs Free Energy Change for ATP Formation
 6.2C. NADP⁺—NADPH Redox Couple

6.3. Chloroplast Bioenergetics
 6.3A. Redox Couples
 6.3B. H⁺ Chemical Potential Differences Caused by Electron Flow
 6.3C. Evidence for Chemiosmotic Hypothesis
 6.3D. Coupling of Flows
7. Temperature and Energy Budgets

7.1. Energy Budget—Radiation
 7.1A. Solar Irradiation
 7.1B. Absorbed Infrared Irradiation
 7.1C. Emitting Infrared Radiation
 7.1D. Values for a, a_{IR}, and e_{IR}
 7.1E. Net Radiation
 7.1F. Examples for Radiation Terms

7.2. Heat Conduction and Convection
 7.2A. Wind
 7.2B. Air Boundary Layers
 7.2C. Boundary Layers for Bluff Bodies
 7.2D. Heat Conduction/Convection Equations
 7.2E. Dimensionless Numbers
 7.2F. Examples of Heat Conduction/Convection

7.3. Latent Heat—Transpiration
 7.3A. Heat Flux Density Accompanying Transpiration
 7.3B. Heat Flux Density for Dew or Frost Formation
 7.3C. Examples of Frost and Dew Formation

7.4. Further Examples of Energy Budgets
 7.4A. Leaf Shape and Orientation
 7.4B. Shaded Leaves within Plant Communities
 7.4C. Heat Storage
 7.4D. Time Constants

7.5. Soil
 7.5A. Thermal Properties
 7.5B. Soil Energy Balance
 7.5C. Variations in Soil Temperature

7.6. Problems
7.7. References and Further Reading

8. Leaves and Fluxes

8.1. Resistances and Conductances—Transpiration
 8.1A. Boundary Layer Adjacent to Leaf
 8.1B. Stomata
 8.1C. Stomatal Conductance and Resistance
9. Plants and Fluxes

9.1. Gas Fluxes above Plant Canopy
9.1A. Wind Speed Profiles
9.1B. Flux Densities
9.1C. Eddy Diffusion Coefficients
9.1D. Resistance of Air above Canopy
9.1E. Transpiration and Photosynthesis
9.1F. Values for Fluxes and Concentrations
9.1G. Condensation

9.2. Gas Fluxes within Plant Communities
9.2A. Eddy Diffusion Coefficient and Resistance
9.2B. Water Vapor 451
9.2C. Attenuation of the Photosynthetic Photon Flux 453
9.2D. Values for Foliar Absorption Coefficient 454
9.2E. Light Compensation Point 455
9.2F. CO₂ Concentrations and Fluxes 456
9.2G. CO₂ at Night 458

9.3. Water Movement in Soil 459
9.3A. Soil Water Potential 460
9.3B. Darcy’s Law 462
9.3C. Soil Hydraulic Conductivity Coefficient 463
9.3D. Fluxes for Cylindrical Symmetry 465
9.3E. Fluxes for Spherical Symmetry 467

9.4. Water Movement in the Xylem and the Phloem 469
9.4A. Root Tissues 469
9.4B. Xylem 470
9.4C. Poiseuille’s Law 471
9.4D. Applications of Poiseuille’s Law 472
9.4E. Phloem 476
9.4F. Phloem Contents and Speed of Movement 478
9.4G. Mechanism of Phloem Flow 479
9.4H. Values for Components of the Phloem Water Potential 480

9.5. Soil–Plant–Atmosphere Continuum 483
9.5A. Values for Water Potential Components 483
9.5B. Resistances and Areas 485
9.5C. Values for Resistances and Resistivities 487
9.5D. Root–Soil Air Gap and Hydraulic Conductances 490
9.5E. Capacitance and Time Constants 492
9.5F. Daily Changes 495
9.5G. Global Climate Change 497

9.6. Problems 500
9.7. References and Further Reading 503

Solutions To Problems 507

Appendix I. Numerical Values of Constants and Coefficients 545

Appendix II. Conversion Factors and Definitions 553

Appendix III. Mathematical Relations 557
III.A. Prefixes (for units of measure) 557
III.B. Areas and Volumes 557
III.C. Logarithms 557
III.D. Quadratic Equation 558
III.E. Trigonometric Functions 558
III.F. Differential Equations 558

Appendix IV. Gibbs Free Energy and Chemical Potential 561
IV.A. Entropy and Equilibrium 561
IV.B. Gibbs Free Energy 563
IV.C. Chemical Potential 565
IV.D. Pressure Dependence of µ_j 565
IV.E. Concentration Dependence of µ_j 568

Index 571