

Plant Biology

Alison M. Smith
George Coupland
Liam Dolan
Nicholas Harberd
Jonathan Jones
Cathie Martin
Robert Sablowski
Abigail Amey

CONTENTS

Acknowledgments		V		increases in plant size were accompanied by	18
		vi vii		evolution of a vascular system	
Con	Contents in Brief			Some of the earliest vascular plants were related to extant lycophytes	19
	pter 1 Origins	1		Horsetails, ferns, and seed plants are derived from a leafless group of plants of the Early Devonian	20
1.1	Earth, Cells, and Photosynthesis	2		Period, 400 million years ago	
	The earth formed 4.6 billion years ago	2		Ferns and horsetails evolved in the Devonian Period	22
	Photosynthesis evolved by 3.8 billion years ago	4		Chemical and cellular complexity increased early in the evolution of land plants	23
	Oxygen-producing photosynthesis was widespread by 2.2 billion years ago	5		Atmospheric CO ₂ and O ₂ levels are determined by rates of photosynthesis and carbon burial	24
	Photosynthetic cyanobacteria produced an oxygen-rich atmosphere	6		The evolution of land plants was at least partly responsible for the decrease in atmospheric CO ₂	2
	Early life on earth evolved in the absence of	6		beginning 450 million years ago	25
	a protective atmospheric ozone layer			The mid-Paleozoic decrease in atmospheric CO ₂ was a driving force in the evolution of big leaves	26
1.2	Eukaryotic Celis	7		•	
	Photosynthetic eukaryotic cells arose from two endosymbiotic events	7	1.4	Seed Plants	27
	Several groups of photosynthetic organisms are derived from the endosymbiotic event that	,		Seeds contain the genetic products of fertilization protected by tissue derived from the sporophyte	28
	gave rise to plastids Fossil evidence indicates that eukaryotic organisms	8		Seed plants evolved in the Devonian and diversified in the Permian, 290 to 250 million years ago	29
	had evolved by 2.7 billion years ago and multicellular organisms by 1.25 billion years ago	10		The sporophyte phase became dominant in the land-plant life cycle in the Devonian Period	30
	Animals and algae diversified in the Early Cambrian Period	11		Five groups of seed plants live on earth today	33
	Box 1–1 What DNA Can Reveal about Phylogeny		1.5	Angiosperms	33
	and Evolution	14		Angiosperms appear in the fossil record in the Early Cretaceous Period, about 135 million years ago	34
1.3	Land Plants	12		Angiosperms evolved in the tropics and then	
	Green plants are monophyletic	13		spread to higher latitudes	34
	Land plants may be descended from plants related to charophycean (charophyte) algae	13		Amborella trichopoda is sister to all living angiosperms	35
	Microfossils indicate that the first land plants appeared in the Middle Ordovician Period,			Eudicots are distinguished from other flowering plants by the number of pollen apertures	37
	about 475 million years ago	15		The earliest angiosperm flowers were small with	0.0
	Plant diversity increased in the Silurian and	1 4		many parts	38
	Devonian Periods The number of special distinguishes the first	16		Monocots are a monophyletic group	38
	The number of sporangia distinguishes the first land plants from their evolutionary descendants	16		The grass family (Poaceae) evolved about 60 million years ago but diversified more recently	39

Chapter 2 Genomes		43	Genome sequencing allows the development of			
2.1	The Nuclear Genome: Chromosomes	44		methods to monitor the activity of many genes simultaneously	78	
2.2	Chromosomal DNA	45	2.6	Cytoplasmic Genomes	79	
	Specialized, repetitive DNA sequences are found in the centromeres and telomeres	45		Plastids and mitochondria evolved from bacteria engulfed by other cells	80	
	Nuclear genes are transcribed into several types of RNA	47		Organellar genes do not follow Mendel's laws of inheritance	80	
	Plant chromosomes contain many mobile genetic elements	49		The genomes of plastids and mitochondria have been reduced during evolution	80	
2.3	Nuclear Gene Regulation	52		Most polypeptides in organelles are encoded by the nuclear genome and targeted to the organelles	81	
	Regulatory sequences and transcription factors control where and when a gene is transcribed	52		Replication and recombination of plastid DNA is not tightly coupled to cell division	82	
	Gene activity can be regulated by chemical changes in the DNA and proteins of chromatin	57		Gene expression has common features in plastids and eubacteria	82	
	Chromatin modification can be inherited through cell division	50		Plastids contain two distinct RNA polymerases	83	
	Gene function is also controlled at the RNA level	59 60		Post-transcriptional processes are important in regulating plastid gene expression	84	
	Small regulatory RNAs control mRNA function	61		Organellar transcripts undergo RNA editing	85	
	Small RNAs can direct chromatin modification to specific DNA sequences	63		Post-translational processes contribute to maintaining the correct ratio of nuclear and plastid-encoded		
	Box 2-1 Transcription Factors: Combinatorial Control	53		components of multisubunit complexes	85	
2.4	Genome Sequences	64		Developmental regulation of plastid gene expression includes signaling pathways between plastids and the nucleus	86	
	The Arabidopsis genome was the first plant genome					
	to be fully sequenced	65	Cha	pter 3 Cells	91	
	Genome sequences are analyzed to identify individual genes	65		The Cell Cycle	93	
	Sequencing of the Arabidopsis genome revealed a complexity similar to that of animal genomes			Transition from one phase of the cell cycle to the next is regulated by a complex set of mechanisms	93	
	and a large proportion of plant-specific genes	66		The cell cycle in plants is controlled by developmental and environmental inputs	98	
	Comparisons among plant genomes reveal conserved and divergent features	68		Many differentiating cells undergo endoreduplication:	90	
	Most angiosperms have undergone genome duplication during their evolution	68		DNA replication without nuclear and cell division Box 3–1 The Nucleus	99	
	Genes can acquire new functions by duplication			DON'S I FRO I NOTEGO	/3	
	and divergence	70	3.2	Cell Division	102	
	The order of genes is conserved between closely related plant species	72		The cytoskeleton moves cellular components during cell division	102	
2.5	Genomes and Biotechnology	73		A preprophase band forms at the site of the future cell wall	104	
	Mutated genes can be localized on the genome by co-segregation with known markers	74		Replicated pairs of chromosomes are separated on a spindle of microtubules	105	
	Genes that are mutated by insertion of DNA can be isolated by detecting the inserted sequence	74		Microtubules direct the formation of the phragmoplast, which orchestrates deposition of		
	Genes can be screened for mutations at the DNA level independent of phenotype	75		the new cell wall Vesicles carry material from the Golgi apparatus	106	
	RNA interference is an alternative method to knock out gene function	76		to the newly forming cell wall Meiosis is a specialized type of cell division that	109	
	Multigenic inheritance is analyzed by mapping quantitative trait loci (QTLs)	77		gives rise to haploid cells and genetic variation Box 3–2 The Cytoskeleton	112 103	

3.3	Organelles	116	Cha	pter 4 Metabolism	167
	Plastids and mitochondria replicate independent			Control of Metabolic Pathways	169
	of cell division Plastid and mitochondrial biogenesis involves	117		Compartmentation increases the potential for metabolic diversity	169
	post-translational import of many proteins The endomembrane system delivers proteins to	119		Metabolic processes are coordinated and controlled by regulation of enzyme activities	170
	the cell surface and to vacuoles	122			
	Organelles move around the cell on actin filaments	127	4.2	Carbon Assimilation: Photosynthesis	174
3 /	Primary Cell Wall	128		Net carbon assimilation occurs in the Calvin cycle	175
J. -	The matrix of the cell wall consists of pectins and			Energy for carbon assimilation is generated by light- harvesting processes in the chloroplast thylakoids	175
	hemicelluloses Cellulose is synthesized at the cell surface after	129		Light energy is captured by chlorophyll molecules and transferred to reaction centers	177
	the cell plate has formed	130		Electron transfer between two reaction centers via	
	Carbohydrate components of the cell wall interact to form a strong and flexible structure	132		an electron transport chain reduces NADP ⁺ and generates a proton gradient across the thylakoid	
	Glycoproteins and enzymes have important functions in the cell wall	134		membrane	180
	Plasmodesmata form channels between cells	135		The proton gradient drives the synthesis of ATP by an ATP synthase complex	184
25	Ceil Expansion and Cell Shape	138		Light-harvesting processes are regulated to maximize the dissipation of excess excitation energy	186
3,3	The properties of the plasma membrane determine	130		Carbon assimilation and energy supply are	
	the composition of the cell and mediate its interactions with the environment	138		coordinated by complex regulation of Calvin cycle enzymes	188
	Proton transport across the plasma membrane generates electrical and proton gradients that drive other transport processes	138		Sucrose synthesis is tightly controlled by the rate of photosynthesis and the demand for carbon by nonphotosynthetic parts of the plant	190
	Movement of water across the plasma membrane is facilitated by aquaporins	141		Synthesis of starch allows the photosynthetic rate to remain high when sucrose synthesis is restricted	195
	Movement of solutes into the cell vacuole drives cell expansion	142		Box 4–1 Light	178
	The vacuole acts as a storage and sequestration	172	4.3	Photorespiration	197
	compartment	144		Rubisco can use oxygen instead of carbon dioxide	107
	Coordinated ion transport and water movement drive stomatal opening	146		as substrate Photorespiratory metabolism has implications	197
	The direction of cell expansion is determined by microtubules in the cell cortex	149		for both the carbon and the nitrogen economy of the leaf	200
	Actin filaments direct new material to the cell surface during cell expansion	151		$\ensuremath{\text{C4}}$ plants eliminate photorespiration by a mechanism that concentrates carbon dioxide	203
	In root hair cells and pollen tubes, cell expansion is				
	localized to the cell tips	152	4.4	Sucrose Transport	210
3.6	Secondary Cell Wall and Cuticle	154		Sucrose moves to nonphotosynthetic parts of the plant via the phloem	210
	The structure and components of the secondary			Phloem loading may be apoplastic or symplastic	210
	cell wall vary from one cell type to another Lignin is a major component of many secondary	154		The path of sucrose unloading from the phloem depends on the type of plant organ	215
	cell walls	155		The supply of assimilate from the leaf is	
	Lignification is a defining characteristic of xylem vessels and tracheids	160		coordinated with demand elsewhere in the plant	216
	Wood is formed by secondary growth of vascular tissues	160	4.5	Nonphotosynthetic Generation of Energy and Precursors	217
	The cuticle forms a hydrophobic barrier on the aerial parts of the plant	163		Interconversion of sucrose and hexose phosphates allows sensitive regulation of sucrose metabolism	218

	Glycolysis and the oxidative pentose phosphate pathway generate reducing power, ATP, and precursors for biosynthetic pathways	220	4.9	Phosphorus, Sulfur, and Iron Assimilation The availability of phosphorus is a major limitation on plant growth	284 287
	The Krebs cycle and mitochondrial electron transport chains provide the main source of ATP	222		Sulfur is taken up as sulfate, then reduced to sulfide and assimilated into cysteine	288
	in nonphotosynthesizing cells Partitioning of sucrose among/"metabolic backbone" pathways is extremely flexible and is related to cell	222		Iron uptake requires specialized mechanisms to increase iron solubility in the soil	291
	function	230	4.10	Movement of Water and Minerals	293
4.6	Carbon Storage	233		Water moves from the soil to the leaves, where it is lost in transpiration	293
	Sucrose is stored in the vacuole	234		Water moves from roots to leaves by a hydraulic	
	The starch granule is a semi-crystalline structure synthesized by small families of starch synthases and starch-branching enzymes	235		mechanism The movement of mineral nutrients in the plant involves both xylem and phloem	294 296
	The pathway of starch degradation depends on the	220		involves both system and pinooth	270
	type of plant organ	239	Cha	pter 5 Development	301
	Some plants store soluble fructose polymers rather than starch	242	,	Overview of Plant Development	302
	Storage lipids are synthesized from fatty acids in the endoplasmic reticulum	242		Multicellularity evolved independently in plants and animals	304
	The fatty acid composition of storage lipids varies among species	244		Volvox is a simple system in which to study the genetic basis of multicellularity	305
	Triacylglycerols are converted to sugars by $\boldsymbol{\beta}$ oxidation and gluconeogenesis	249	5.2	Embryo and Seed Development	306
	Sugars may act as signals that determine the extent of carbon storage	251		External cues establish the apical-basal axis in the <i>Fucus</i> embryo	307
4.7	Plastid Metabolism	253		The cell wall directs the fate of cells in the <i>Fucus</i> embryo	308
	Plastids exchange specific metabolites with the cytosol via metabolite transporters	253		Embryo development in higher plants occurs within the seed	309
	Fatty acids are synthesized by an enzyme complex in plastids	256		The fate of embryonic cells is defined by their position	310
	Membrane lipid synthesis in plastids proceeds via a "prokaryotic" pathway different from the "eukaryotic"			Progressive polarization of auxin transporters mediates formation of the basal pole in embryos	312
	pathway elsewhere in the cell Different pathways of terpenoid synthesis in the	259		Radial cell pattern in the embryonic root and hypocotyl is defined by the SCARECROW and SHORT ROOT transcription factors	313
	plastid and the cytosol give rise to different products Tetrapyrroles, the precursors of chlorophyll and	262		Clues from apical-basal and radial patterning of the embryo are combined to position the root meristem	314
	heme, are synthesized in plastids	265		The shoot meristem is established gradually and independent of the root meristem	315
4.8	5	270		The endosperm and embryo develop in parallel	316
	Plants contain several types of nitrate transporter, regulated in response to different signals	270		Division of the cells that give rise to endosperm is repressed until fertilization	317
	Nitrate reductase activity is regulated at many different levels	272		After embryo and endosperm development, seeds usually become dormant	319
	Assimilation of nitrogen into amino acids is coupled to demand, nitrate availability, and availability of biosynthetic precursors	274		Box 5–1 Clonal Analysis	311
	Amino acid biosynthesis is partly controlled by	214	5.3	Root Development	320
	feedback regulation	276		Plant roots evolved independently at least twice	321
	Nitrogen is stored as amino acids and specific storage proteins	281		Roots have several zones containing cells at successive stages of differentiation	321

	The Arabidopsis root has simple cellular organization Cell fate depends on the cell's position in the root Genetic analysis confirms the position-dependent	322 323		In the ABC model of floral organ identity, each type of organ is determined by a specific combination of homeotic genes	354
	specification of cell type Lateral root development requires auxin	324 325		Floral organ identity genes are conserved throughout the angiosperms	357
	Box 5–2 Stem Cells in Plants and Animals	323		Asymmetrical growth of floral organs gives rise to bilaterally symmetrical flowers	358
5.4	Shoot Development	326		Additional regulatory genes control later stages of floral organ development	358
	Cells in the shoot apical meristem are organized in radial zones and in concentric layers	327	5.6	From Sporophyte to Gametophyte	360
	The number of new meristem cells is constantly balanced by the number that form new organs	330		The male gametophyte is the pollen grain, with a vegetative cell, gametes, and a tough cell wall	360
	Organ primordia emerge from the flanks of the meristem in a repetitive pattern	332		Pollen development is aided by the surrounding sporophyte tissues	362
	Changes in gene expression precede primordium emergence Development of compound leaves is associated	333		The female gametophyte develops in the ovule, which contains gametes for the two fertilization events that form the zygote and the endosperm	364
	with expression of meristem genes during early leaf development Leaves are shaped by organized cell division	334		Development of the female gametophyte is coordinated with development of the sporophyte	
	followed by a period of cell expansion and differentiation	335		tissues of the ovule A pollen grain germinates on the carpel and forms a tube that transports the sperm nuclei toward	365
	Different regions of the leaf primordium acquire different fates early in development	335		the ovule Growth of the pollen tube is oriented by long-range	365
	Specific genes regulate the differences between the two faces of the leaf	337		signals in the carpel tissues and short-range signals produced by the ovule	366
	Lateral growth requires the boundary between the dorsal and ventral sides of the leaf	338		Plants have mechanisms that allow the growth only of pollen tubes carrying specific genes	367
	The leaf reaches its final shape and size by regulated cell division and cell expansion	339	339	Self-incompatibility can be gametophytic or sporophytic, depending on the origin of the pollen	
	Leaf growth is accompanied by development of an increasingly elaborate vascular system, which	240		protein recognized Angiosperms have double fertilization	367 369
	is controlled by auxin transport Cell communication and oriented cell divisions	340		Genes from the male and female gametes are not expressed equally after fertilization	370
	control the placement of specialized cell types in the leaf	342		Some plants can form seeds without fertilization	371
	Leaf senescence is an active process that retrieves nutrients from leaves at the end of their useful lifespan	344	Cha	pter 6 Environmental Signals	377
	Branches originate from lateral meristems whose growth is influenced by the apical meristem	346	6. 1	Seed Germination	378
	Internodes grow by cell division and cell elongation, controlled by gibberellins	347	6.2	Light and Photoreceptors Plant development proceeds along distinct pathways	380
	A layer of meristem cells generates vascular tissues and causes secondary thickening of the stem	349		in light and dark Distinct photoreceptors detect light of different	380
<i>E E</i>	·			wavelengths	381
3.3	From Vegetative to Reproductive Development Reproductive structures in angiosperms are	350		Phytochromes are converted from an inactive to an active form by exposure to red light	382
	produced by floral and inflorescence meristems Development of floral meristems is initiated by a	350		Distinct forms of phytochrome have different functions Phytochrome plays a role in shade avoidance	385 387
	conserved regulatory gene The expression pattern of LEAFY-like genes	351		Cryptochromes are blue-light receptors with specific and overlapping functions	388
	determines inflorescence architecture Flowers vary greatly in appearance, but their basic	351		Phototropins are blue-light receptors involved in phototropism, stomatal opening, and chloroplast	
	structure is directed by highly conserved genes	353		migration	390

	Some photoreceptors respond to red and blue light	392		Statoliths are key to graviperception in stems,	420
	Biochemical and genetic studies provide information on the components of the			hypocotyls, and roots Columella cells of the root cap are the site of	430
	phytochrome signal-transduction pathway	392		graviperception in the growing root	430
				The endodermal cell layer is the site of	401
6.3	Seedling Development	395		graviperception in growing stems and hypocotyls	431
	Ethylene is synthesized from methionine in a pathway controlled by a family of genes	396		Mutations in auxin signaling or transport cause defects in root gravitropism	431
	Genetic analysis has identified components of the ethylene signal-transduction pathway	396		The extent of lateral root elongation varies in response to soil nutrient levels	432
	The ethylene response is negatively regulated by binding of ethylene to its receptors	398	Char	pter 7 Environmental Stress	437
	Inactivation of CTP1 allows activation of	Light as Stress	438		
	downstream components of the ethylene	399	,,,	Photosystem II is highly sensitive to too much light	439
	signaling chain Ethylene interacts with other signaling pathways	400		High light induces nonphotochemical quenching,	
	The light responses of seedlings are repressed in			a short-term protective mechanism against photooxidation	439
	the dark COP1 and the COP9 signalosome function by	400		Vitamin E–type antioxidants also protect PSII under light stress	443
	destabilizing proteins required for photomorphogenesis	402 Photodamage to photosystem II is quickly repaired in light stress_tolerant plants	444		
	Brassinosteroids are required for repression of photomorphogenesis in the dark and other important functions in plant development			Some plants, such as winter evergreens, have	
		403		mechanisms for longer-term protection against light stress	445
6.4	Flowering	407		Low light leads to changes in leaf architecture, chloroplast structure and orientation, and life cycle	447
	Reproductive development in many plants is controlled by photoperiod	408		Ultraviolet irradiation damages DNA and proteins	449
	Phytochromes and cryptochromes act as light receptors in the photoperiodic control of flowering	410		Resistance to UV light involves the production of specialized plant metabolites, as well as	
	Circadian rhythms control the expression of many	410		morphological changes	451
	plant genes and affect the photoperiodic control of flowering	411	7.2	High Temperature	452
	Circadian rhythms in plants result from input of environmental signals, a central oscillator, and			High temperature induces the production of heat shock proteins	453
	output of rhythmic responses Substances produced in leaves can promote or	413		Molecular chaperones ensure the correct folding of proteins under all conditions	454
	inhibit flowering Similar groups of genes are involved in photoperiodic	416		Families of heat shock proteins play different roles in the heat stress response in different species	454
	control of flowering in Arabidopsis and in rice Vernalization is detected in the apex and controls	418		Synthesis of heat shock proteins is controlled at the transcriptional level	455
	flowering time in many plants	422		Some plants have developmental adaptations to heat stress	456
	Genetic variation in the control of flowering may be important in the adaptation of plants to different	424	7.2	W. L. Dagiela	456
	environments Vernalization response in Arabidopsis involves	424	7.3	Water Deficit Water deficit occurs as a result of drought, salinity,	430
	modification of histones at the <i>FLC</i> gene, which is also regulated by the autonomous flowering pathway			and low temperature	456
		426		Plants use abscisic acid as a signal to induce responses to water deficit	457
	Photoperiodic and vernalization pathways of Arabidopsis converge to regulate the transcription			Plants also use ABA-independent signaling pathways to respond to drought	460
	of a small set of floral integrator genes	428		Abscisic acid regulates stomatal opening to control water loss	461
6.5	Root and Shoot Growth	429		Drought-induced proteins synthesize and transport	
	Plant growth is affected by gravitational stimuli	429		osmolytes	462

	Ion channels and aquaporins are regulated in		7.7	Oxidative Stress	493
	response to water stress Many plant species adopt metabolic specialization	464		Reactive oxygen species are produced during normal metabolism, but also accumulate under a range of	
	under drought stress	465		environmental stress conditions	493
	Plants that tolerate extreme desiccation have a modified sugar metabolism	467		Ascorbate metabolism is central to the elimination of reactive oxygen species	494
	Many plant species adapted to arid conditions have			Hydrogen peroxide signals oxidative stress	496
	specialized morphology Rapid life cycling during water availability is	468		Ascorbate metabolism is central to responses to oxidative stress	496
	common in plants of arid regions	471			
74	Salt Stress	472	Cha	pter 8 Interactions with Other Organisms	499
7 4-7	Salt stress disrupts homeostasis in water potential	7,2	8.1	Microbial Pathogens	501
	and ion distribution	472		Most pathogens can be classified as biotrophs or necrotrophs	502
	Salt stress is signaled by ABA-dependent and ABA-independent pathways	472		Pathogens enter plants via several different routes	503
	Adaptations to salt stress principally involve internal sequestration of salts	473		Pathogen infections lead to a broad range of disease symptoms	506
	Physiological adaptations to salt stress include	4/3		Many pathogens produce effector molecules that	
	modulation of guard cell function	476		influence their interactions with the host plant	507
	Morphological adaptations to salt stress include salt-secreting trichomes and bladders	476		Agrobacterium transfers its DNA (T-DNA) into plant cells to modify plant growth and feed the bacterium, and this transfer system is used in biotechnology	511
	Osmotic stress stimulates reproduction in some halophytes 479	470		Some pathogen effector molecules are recognized	J11
			by the plant and trigger defense mechanisms	515	
7.5	Cold	479		The products of some bacterial <i>avr</i> genes act inside the plant cell	516
	Low temperature is similar to water deficit as an environmental stress	479		The functions of fungal and oomycete effector molecules are poorly understood	518
	Temperate plants acclimated by prior exposure to low temperatures are resistant to freezing damage	480		. ,	
	Exposure to low temperatures induces cold-regulated		8.2	Pests and Parasites	519
	(COR) genes	481		Parasitic nematodes form intimate associations with host plants	519
	Expression of the transcriptional activator CBF1 induces <i>COR</i> gene expression and cold tolerance	481		Insects cause extensive losses in crop plants, both	317
	Low-temperature signaling involves increases in			directly and by facilitating infection by pathogens	521
	intracellular calcium	483		Some plants are plant pathogens	522
	ABA-dependent and ABA-independent pathways signal in response to cold	483	0.2	Viruses and Viroids	524
	Plant species of warm climates are chill-sensitive	483	0.3	Viruses and viroids are a diverse and sophisticated	324
	Vernalization and cold acclimation are closely			set of parasites	524
	linked processes in wheat and other cereal crops	483		Different types of plant viruses have different structures and replication mechanisms	525
7.6	Anaerobic Stress	484			
	Water-logging is a cause of hypoxic or anoxic stress		8.4	Defenses	529
	for plants	485		Basal defense mechanisms are triggered by pathogen-associated molecular patterns (PAMPs)	530
	Hypoxia is signaled by a Rop-mediated signaling pathway involving transient induction of ROS	485		R proteins and many other plant proteins involved	550
	Anoxia induces shifts in primary metabolism	486		in defense carry leucine-rich repeats	534
	Aerenchyma facilitates long-distance oxygen transport in flood-tolerant plants	488		R genes encode families of proteins involved in recognition and signal transduction	535
	Water-logging is associated with other developmental adaptations that increase plant survival	490		Most R proteins do not directly recognize pathogen effector molecules	536
	Plants synthesize oxygen-binding proteins under hypoxic conditions	493		R gene polymorphism restricts disease in natural populations	538

	R genes have been selected in crop breeding from		9.2	Scientific Plant Breeding	583
	the earliest times	540		Scientific approaches to crop plant improvement	
	Insensitivity to toxins is important in plant defense against necrotrophs	541		have resulted in substantial changes in the genetic structure of many crops	583
	Plants synthesize antibiotic compounds that confer	5.40		Triticale is a synthetic domesticated crop species	585
	resistance to some microbes and herbivores Disease resistance is often associated with the localized death of plant cells	542 548		Disease resistance is an important determinant of yield and can be addressed both by plant breeding and by crop management	586
	In systemic resistance, plants are "immunized" by biological challenges that lead to cell death	549		Mutations in genes affecting fruit color, fruit ripening, and fruit drop have been used in tomato	
	Wounding and insect feeding induce complex			breeding programs	587
	plant defense mechanisms	552		In the "Green Revolution," the use of dwarfing	
	Chewing insects provoke release of volatile compounds that attract other insects RNA silencing is important in plant resistance to viruses	554		mutations of wheat and rice resulted in major increases in crop yield	588
		555		Heterosis also results in major increases in crop yields	590
8.5	Cooperation	557		Cytoplasmic male sterility facilitates the production of F1 hybrids	592
	Many plant species are pollinated by animals Symbiotic nitrogen fixation involves specialized interactions of plants and bacteria Mycorrhizal fungi form intimate symbioses with	557			
		560	9.3	Biotechnology Agrobacterium-mediated gene transfer is a widely	593
				used method for generating transgenic plants	593
		568		Particle bombardment—mediated gene transfer is an alternative means of generating transgenic plants	594
Chapter 9 Domestication and Agriculture		573		Herbicide resistance in transgenic crops facilitates	EOF
	Domestication	574		weed control	595
9.1	The domestication of crop species involved selection by humans	574		Transgenic expression of <i>Bacillus thuringiensis</i> (Bt) crystal protein in crop plants confers insect resistance and increased yield	596
	The difference between maize and its wild ancestor,	3/4		Many different crop plant traits can potentially	0,0
	teosinte, can be explained by allelic variation at five	55/		be improved by transgenesis	596
	different loci Alterations in the expression of the gene <i>teosinte</i>	576		"The future is green": The relationship between plants and people will continue to develop	599
	branched played an important role in the domestication of maize	578			
	The <i>teosinte glume architecture</i> gene regulates			ssary	603
	glume size and hardness	579	_	are Acknowledgments	631
	Cultivated wheat is polyploid	580	Inde	ŞX	635
	Cauliflower arose through mutation of a meristem-identity gene	581			
	Increase in fruit size occurred early in the domestication of tomato	583		;	