Categorical Data Analysis

for Geographers and

Environmental Scientists

CONTENTS

Preface	χv
Acknowledgements	xvii
Part 1 Some essential preliminaries	1
Chapter 1 introduction	3
1.1 Classifications, categorical data, and a methodological transformation	4
1.2 A framework for discussion	7
1.3 Some important tables	8
1.4 Sampling schemes	13
1.4.1 Poisson	14
1.4.2 Multinomial	14
1.4.3 Product-multinomial	14
1.5 Integration and transition	15
1.6 How to use the book and what it assumes	16
Part 2 The basic family of statistical models	19
Chapter 2 Categorical response variable, continuous explanatory variables	21
2A TWO RESPONSE CATEGORIES: THE DICHOTOMOUS CASE	21
2.1 Introduction	21
2.2 A conventional regression model approach	22

2.3 Alternative solutions	24
2.3.1 The linear probability model	25
2.3.2 The logit model	28
2.3.3 The probit model	29
2.4 Estimating the parameters of a logistic/logit model	30
2.4.1 Grouped data and weighted least squares	30
2.4.2 Individual data and maximum likelihood	35
2.5 Some simple examples	38
EXAMPLE 2.1 Oil and gas exploration in south-central Kansas	39
EXAMPLE 2.2 Work trip mode choice in Sydney	40
EXAMPLE 2.3 Shopping trip mode choice in Pittsburgh	42
2.6 Testing hypotheses about the logistic/logit model parameters	43
2.6.1 Separate tests	43
2.6.2 Joint tests	45
2.6.3 Partial joint tests	45
EXAMPLE 2.4 Oil and gas exploration in south-central Kansas (continued)	46
2.7 Goodness-of-fit measures, residuals, and predicted values	49
2.7.1 Goodness-of-fit measures	49
2.7.2 Residuals	52
EXAMPLE 2.5 Oil and gas exploration in south-central Kansas* (continued)	54
EXAMPLE 2.6 Resource evaluation in Newfoundland	58
2B MULTIPLE RESPONSE CATEGORIES: THE POLYTOMOUS CASE	62
2.8 Introduction	62
2.9 The extended linear logit and logistic models	62
2.9.1 The linear logit model	63
2.9.2 The logistic model	65
2.9.3 General forms	66
2.10 Estimating the parameters of the extended models	67
EXAMPLE 2.7 Oil and gas exploration in south-central Kansas (continued)	69
2.11 Types of explanatory variables and response categories	72
2.11.1 Types of explanatory variables	72
2.11.2 Types of response categories	76

EXAMPLE 2.8	Shopping trip destination choice in Pittsburgh	77
EXAMPLE 2.9	Shopping trip destination choice in West Yorkshire	78
EXAMPLE 2.10	Shopping destination and mode of travel choice in San Francisco	81
EXAMPLE 2.11	Shopping destination and mode of travel choice in Eindhoven	82
Appendix 2.1	Alternative derivations of logistic/logit models	84
	itegorical response variable, mixed planatory variables	91
3.1 Dummy va	riables in conventional regression models	91
3.2 Categorica	l explanatory variables in logistic/logit models	94
3.3 Dummy va explanator	riables within the general typology of yvariables	96
3.4 A range of	illustrative examples	97
EXAMPLE 3.1	Determinants of housing tenure in Sydney	97
EXAMPLE 3.2	Occupational attainment in the United States	99
EXAMPLE 3.3	Housing choice in Pittsburgh	103
EXAMPLE 3.4	Work trip mode choice in Washington D.C. and the spatial transferability of models	106
3.5 Summary		109
ех	ategorical response variable, categorical planatory variables: the linear logit model proach	111
4.1 Linear logi	t models for cell (f): basic forms	112
EXAMPLE 4.1	Preference for army camp location among American soldiers	114
EXAMPLE 4.2	Evaluation of military policemen by negro soldiers from different regions	117
4.2 Weighted logit mode	least squares estimation of cell (f) linear ls	121
4.3 Goodness-	of-fit and test statistics	125
4.3.1 Joint to	ests	126
4.3.2 Partial	l joint tests	127
4.3.3 Separa	ate tests	128
EXAMPLE 4.3	Automobile accidents and the accident environment in North Carolina	129
4.4 Coding sys	tems for categorical explanatory variables	132

4.5 Interactions, saturation, hierarchies and parsimony	136
EXAMPLE 4.4 Determinants of homeownership in Boston	
and Baltimore	140
4.6 Model selection	143
EXAMPLE 4.5 Byssinosis amongst U.S. cotton textile workers	147
4.7 A more general matrix formulation	152
Chapter 5 All variables categorical but no division	100
into response and explanatory	155
5.1 The hypothesis of independence and the chi-square test	156
5.2 Towards a log-linear model of independence	157
5.3 A hierarchical set of log-linear models for two-dimensional contingency tables	161
EXAMPLE 5.1 Some simple two-dimensional contingency tables	163
(a) Pebbles in glacial till	164
(b) Lifetime residential mobility and retirement migration	166
(c) Farm acreage under woodland	168
5.4 Log-linear models for multidimensional contingency tables	169
EXAMPLE 5.2 Age, decay and use of buildings in north-east London	175
EXAMPLE 5.3 Industrial location in Hull	176
5.5 Abbreviated notation systems for log-linear models	179
5.6 Estimation of the parameters and the expected	
cell frequencies	182
5.6.1 The iterative proportional fitting procedure	184
5.6.2 The iterative weighted least squares procedure	188
5.6.3 The Newton-Raphson procedure	190
5.7 Model selection	190
5.7.1 Strategy 1. Stepwise selection	191
5.7.2 Strategy 2. Abbreviated stepwise selection	194
5.7.3 Strategy 3. Screening	196
5.7.4 Strategy 4. Aitkin's simultaneous test procedure	200
EXAMPLE 5.4 Shopping behaviour in Manchester	204
EXAMPLE 5.5 Non-fatal deliberate self-harm in Bristol	207
5.8 The analysis of residuals	211
EXAMPLE 5.6 Opinions about a television series in urban and rural areas	213

Chapter 6 Categorical response variable, categorical explanatory variables: the log-linear model	215
approach	
6.1 Fixed marginal totals	215
6.2 Log-linear models for mixed explanatory/response variable situations	216
EXAMPLE 6.1 A hypothetical three-dimensional table	217
EXAMPLE 6.2 Shopping behaviour in Manchester (continued)	219
EXAMPLE 6.3 Relationships between ethnic origin, birthplace, age and occupation in Canada in 1871	, 221
6.3 Log-linear models as logit models	223
6.3.1 The dichotomous response variable case	223
6.3.2 The multiple-category response variable case	227
6.3.3 Discussion	230
Chapter 7 Computer programs for categorical data analysis	233
7.1 A classification of available programs	233
7.2 Programs which use function maximization algorithms	233
7.3 Programs based upon weighted least squares algorithms	236
7.3.1 Iterative weighted least squares	236
7.3.2 Non-iterative weighted least squares	237
7.4 Programs which use iterative proportional fitting algorithms	
Dowl 2 Eviencione of the book statistical	
Part 3 Extensions of the basic statistical models	239
Chapter 8 Special topics in logistic/logit modelling	241
8.1 Logistic regression diagnostics and resistant fitting	241
8.2 Some logistic/logit model analogues to classical spatial analysis models	246
8.2.1 Trend surface models	
8.2.2 Space-time models	
EXAMPLE 8.1 Aircraft noise disturbance around Manchester Airport	250
EXAMPLE 8.2 The space-time pattern of housing deterioration in Indianapolis	252

8.3 Logistic/log	git models for ordered categories and	
systems of		254
8.3.1 Ordere	ed response categories	254
8.3.2 System	s of logistic/logit models	255
8.4 Some exter of cell (f) lin	nsions of the general matrix formulations near logit models	259
8.4.1 A mult	iple response category model	260
8.4.2 A reped	ated-measurement research design example	261
8.4.3 Paired	comparison experiment examples	264
EXAMPLE 8.3	Residential preferences of schoolchildren in Southend-on-Sea	269
8.5 An alternational linear logit	tive treatment of error structures in cell (f) models	271
Chapter 9 Spe	ecial topics in log-linear modelling	275
9.1 Combining	categories and collapsing tables	275
EXAMPLE 9.1	Oak, hickory and maple distributions in Lansing Woods, Michigan	277
9.2 Sampling ze	eros	279
9.2.1 Sampli	ng zeros and saturated log-linear models	279
9.2.2 Sampli	ng zeros and unsaturated log-linear models	281
EXAMPLE 9.2	Non-fatal deliberate self-harm in Bristol (continued)	282
EXAMPLE 9,3	Relationships between tree species and tree height in the forests of South Island, New Zealand	284
9.3 Structural z	zeros and incomplete contingency tables	285
EXAMPLE 9.4	Filtering in the housing market of Kingston, Ontario	289
EXAMPLE 9.5	Plant type, soil type and slope aspect	292
9.4 Outliers or	rogue cells	293
EXAMPLE 9.6	Opinions about a television series in urban and rural areas (continued)	293
9.5 Square tabl	les, symmetry, and marginal homogeneity	295
9.5.1 Symme	etry	295
9.5.2 Margin	al homogeneity	296
9.5.3 Quasi-s	symmetry	297
	try and marginal homogeneity in mensional tables	299
9.5.5 Alterna	ative log-linear models for square tables	300

EXAMPLE 9.7 Filtering in the housing market of Kingston, Ontario (continued)	301
9.6 Some remaining issues	303
9.6.1 The multiplicative form of the log-linear model	303
9.6.2 Log-linear models for tables with ordered categories	304
9.6.3 Causal analysis with log-linear models	305
9.6.4 Log-linear models and spatially dependent data	307
Part 4 Discrete choice modelling	311
Chapter 10 Statistical models for discrete choice analysis	313
10.1 Random utility maximization, discrete choice theory and multinomial logit models	313
EXAMPLE 10.1 The collapse and re-opening of the Tasman Bridge	318
10.2 The IIA property and its implications	324
10.3 The search for less restrictive discrete choice models	326
10.3.1 The multinomial probit model	327
10.3.2 The dogit model	328
10.3.3 The nested logit model	329
10.3.4 Elimination-by-aspects models	332
10.3.5 Weight shifting models	334
EXAMPLE 10.2 Location decisions of clothing retailers in Boston	337
EXAMPLE 10.3 Travel mode choice in Montreal	340
EXAMPLE 10.4 Travel mode choice in the Rotterdam/Hague Metropolitan area.	341
10.4 Assessing and comparing the performance of alternative discrete choice models	343
10.4.1 Tests of the IIA property of the MNL	344
10.4.2 Tests of the MNL against specific alternative discrete choice models	347
10.4.3 A generalized test procedure for comparing the performance of any pair of discrete choice models	349
10.5 A brief guide to some remaining statistical issues	350
10.5.1 Statistical transformations and the search for appropriate functional form	350
10.5.2 Sample design and parameter estimation	351
10.5.3 Panel data and dynamic modelling	353

10.5.4 Specification analysis: improper exclusion or inclusion of explanatory variables	355
10.5.5 Wider themes of empirical application	357
Part 5 Towards integration	359
Chapter 11 An alternative framework	361
11.1 The central classification scheme reconsidered	361
11.2 The GLM framework	362
11.2.1 The linear predictor	363
11.2.2 The link function	364
11.2.3 The error distribution	364
11.2.4 Some examples of GLMs	365
11,3 Conclusion	366
References	367
Author index	383
Example index	387
Subject index	389