Contents | Pı | eface | | xiii | |----|--|--|--| | Co | ntrib | utors | xvii | | P. | ART I | Transcription Factors: Partners of Immune Tolerance to Self | | | 1 | | c riptional regulation of T cell tolerance
T. Abe, Ayana Jordan, Vanessa M. Hubbard and Fernando Macian | 3 | | 2 | 1.1
1.2
1.3
1.4
1.5
1.6
1.7
Refer | Introduction T cell anergy Ca ²⁺ /calcineurin/NFAT signalling in T cell anergy Transcriptional programme of T cell anergy Transcriptional repression in T cell anergy: epigenetic modification of the Il2 promoter Regulatory T cells Transcriptional control of Treg development and function ences | 3
4
5
7
10
12
12
15 | | _ | | K. Polansky, Stefan Floess, Jennifer Freyer, Alf Hamann and Jochen Huehn | 21 | | | 2.1
2.2
2.3
2.4
2.5
2.6
2.7
Refer | Introduction Naturally occurring CD25 ⁺ CD4 ⁺ Tregs The transcription factor FOXP3: determining Treg function and identity Molecular regulation of FOXP3 Tregs as a stable lineage: indications of epigenetic imprinting Induced Tregs: stable suppressors or transient immuno-modulators? Conclusions ences | 21
22
25
26
28
30
32
33 | | 3 | | ole of NF-κB in central tolerance
thao Zhu, Matthew Ruddy and Yang-Xin Fu | 39 | | | 3.1
3.2 | Introduction Canonical and alternative NF-KB pathways | 39
40 | vi CONTENTS | | 3.3
3.4 | Thymic stroma and central tolerance NF-κB and regulatory T cell development | 43
47 | |---|------------|---|----------| | | 3.5 | NF-κB and thymocyte positive and negative selection | 48 | | | 3.6 | Conclusions and perspectives | 50 | | | 3.7 | Acknowledgement | 50 | | | Refere | ences | 50 | | 4 | | ole of Act1 in the control of autoimmunity
N. Jørgensen, Natalia V. Giltiay, Angela Johnson and Xiaoxia Li | 55 | | | 4.1 | Introduction | 55 | | | 4.2 | Autoimmunity and autoimmune mouse models | 56 | | | 4.3 | Molecular mechanisms of autoimmunity | 58 | | | 4.4 | Act1: a modulator of autoimmunity | 60 | | | 4.5 | Conclusions | 70 | | | Refere | ences | 71 | | 5 | | ation of T cell anergy and escape from regulatory | | | | | suppression by Cbl-b | 75 | | | Stefar | rie Loeser and Josef M. Penninger | | | | 5.1 | Introduction | 75 | | | 5.2 | Mechanisms of T cell tolerance induction | 75 | | | 5.3 | Molecular establishment of T cell anergy | 78 | | | 5.4 | Ubiquitin E3 ligases in T cell tolerance | 79 | | | 5.5 | Molecular function and regulation of Cbl-b | 80 | | | 5.6 | Physiological relevance of Cbl-b | 83 | | | 5.7 | The role of Cbl-b in T cell tolerance | 84 | | | 5.8 | Deregulation of Cbl-b in disease | 86 | | | 5.9 | Therapeutic potential of Cbl-b in tumour immunity | 86 | | | 5.10 | Implications for autoimmune disease | 88 | | | Refere | ences | 88 | | 6 | Indol | eamine 2,3-dioxygenase: transcriptional regulation | | | | | utoimmunity | 95 | | | | Laura Belladonna, Ciriana Orabona, Claudia Volpi, Ursula Grohmann,
Puccetti and Maria Cristina Fioretti | | | | 6.1 | Introduction | 95 | | | 6.2 | L-Trp degradation along the kynurenine pathway and immune | | | | | functions of IDO | 96 | | | 6.3 | IDO immunobiology and therapeutic intervention | 101 | | | 6.4 | Transcriptional regulation of the IDO-encoding gene | 101 | | | 6.5 | Impaired IDO activity and loss of tolerance in autoimmune diseases | 107 | | | 6.6 | IDO-based therapies for autoimmune disease | 109 | | | 6.7 | Acknowledgement | 110 | | | Refere | nces | 111 | CONTENTS vii ## PART II Stress Responses that Break Immune Silence | 7 | Chron | natin modifications, oxidative stress and nucleosome | | |----|--------|---|-----| | | | ntibodies | 119 | | | Annik | a Erbacher and Patrice Decker | | | | 7.1 | Introduction | 119 | | | 7.2 | Nucleosome and SLE | 120 | | | 7.3 | Epigenetics and SLE | 123 | | | 7.4 | Oxidative stress in SLE: definition and mechanisms | 124 | | | 7.5 | Oxidative stress, epigenetic alterations and nucleosome | | | | | immunogenicity | 127 | | | 7.6 | Conclusion | 129 | | | 7.7 | Acknowledgements | 129 | | | Refere | ences | 130 | | 8 | Stress | s, epigenetics and thyroid autoimmunity | 135 | | | | ocles Tsatsoulis | | | | 8.1 | Introduction | 135 | | | 8.2 | The Th1/Th2 balance in immune-response regulation | 136 | | | 8.3 | Stress hormones and the Th1/Th2 balance | 136 | | | 8.4 | The Th1/Th2 balance in thyroid autoimmunity | 138 | | | 8.5 | Association of stress with thyroid autoimmunity | 140 | | | 8.6 | Stress in the clinical expression of thyroid autoimmunity: | | | | | a unifying hypothesis | 143 | | | 8.7 | Epigenetic regulation of T cell differentiation and stress hormones | 145 | | | 8.8 | Conclusions | 146 | | | Refere | ences | 146 | | 9 | React | ive intermediates, inflammation and epigenetics in lupus | 151 | | | Gary S | 5. Gilkeson and Jim C. Oates | | | | 9.1 | Introduction | 151 | | | 9.2 | Biology of reactive intermediates | 151 | | | 9.3 | RNIs in murine models of lupus | 155 | | | 9.4 | Genetic associations of RNI/ROI and lupus | 159 | | | 9.5 | Conclusions | 160 | | | Refere | ences | 160 | | 10 | Post- | translational modification of HMGB1 and its role | | | | | mune activation | 165 | | | | dh J. Ullal and David S. Pisetsky | | | | 10.1 | Introduction | 165 | | | 10.2 | Molecular biology of HMGB1 | 166 | | | 10.3 | HMGB1 as an immune mediator | 167 | viii CONTENTS | | 10.4
10.5 | Mechanisms of HMGB1 modification and release The role of HMGB1 as a mediator of disease and | 169 | |-----|--|--|---| | | 10.5 | target of therapy | 172 | | | 10.6 | Conclusion | 174 | | | Refere | | 174 | | 11 | | ncratic drug-induced liver injury: facts and perspectives
Castell and Isabel Miñana | 179 | | | 11.1 | Introduction | 179 | | | 11.2 | Intrinsic drug toxicity to the liver | 179 | | | 11.3 | Idiosyncratic drug toxicity to the liver | 180 | | | 11.4 | Mechanisms of hypersensitivity reactions to drugs in the liver | 182 | | | 11.5 | Hypersensitivity versus tolerance | 187 | | | 11.6 | Hepatocyte injury as a consequence of allergic hepatitis | 192 | | | 11.7 | Drug-induced liver autoimmunity | 194 | | | 11.8 | Epigenetics of drug-induced liver injury | 197 | | | 11.9 | Acknowledgements | 199 | | | Refere | nces | 199 | | PAI | RT III | Epigenetic Modifiers of Autoimmunity | | | 12 | | netic modifications associated with T cell tolerance D. Wells and Rajan M. Thomas | 209 | | | 12.1 | Immunity versus tolerance | 209 | | | 12.2 | Epigenetic regulation of the physical structure of genomic DNA | 209 | | | 12.3 | Epigenetic control of pro-inflammatory cytokine gene | | | | | transcription | | | | 17/ | | 211 | | | 12.4 | Epigenetic silencing of cytokine genes in tolerant T cells | 211
213 | | | 12.5 | Targeting epigenetic modifications to cytokine genes | 213 | | | 12.5 | Targeting epigenetic modifications to cytokine genes in tolerant T cells | | | | | Targeting epigenetic modifications to cytokine genes
in tolerant T cells
Common mechanisms of epigenetic silencing among distinct types | 213
217 | | | 12.5
12.6 | Targeting epigenetic modifications to cytokine genes in tolerant T cells Common mechanisms of epigenetic silencing among distinct types of tolerant T cells? | 213
217
220 | | | 12.5 | Targeting epigenetic modifications to cytokine genes in tolerant T cells Common mechanisms of epigenetic silencing among distinct types of tolerant T cells? | 213
217 | | 13 | 12.5
12.6
Refere | Targeting epigenetic modifications to cytokine genes in tolerant T cells Common mechanisms of epigenetic silencing among distinct types of tolerant T cells? | 213
217
220 | | 13 | 12.5
12.6
Refere
DNA n
Biola M | Targeting epigenetic modifications to cytokine genes in tolerant T cells Common mechanisms of epigenetic silencing among distinct types of tolerant T cells? Inces methylation alterations in systemic lupus erythematosus | 213
217
220
220 | | 13 | 12.5
12.6
Refere | Targeting epigenetic modifications to cytokine genes in tolerant T cells Common mechanisms of epigenetic silencing among distinct types of tolerant T cells? Inces The thylation alterations in systemic lupus erythematosus The distinct types are tolerant T cells? The distinct types of to | 213
217
220
220
229 | | 13 | 12.5
12.6
Refere
DNA n
<i>Biola M</i>
13.1 | Targeting epigenetic modifications to cytokine genes in tolerant T cells Common mechanisms of epigenetic silencing among distinct types of tolerant T cells? Inces The thylation alterations in systemic lupus erythematosus The Javierre, Manel Esteller and Esteban Ballestar Introduction | 213
217
220
220
229 | | 13 | 12.5
12.6
Refere
DNA n
<i>Biola M</i>
13.1 | Targeting epigenetic modifications to cytokine genes in tolerant T cells Common mechanisms of epigenetic silencing among distinct types of tolerant T cells? Inces Methylation alterations in systemic lupus erythematosus M. Javierre, Manel Esteller and Esteban Ballestar Introduction DNA methylation: an epigenetic determinant of lymphocyte | 213
217
220
220
229
229 | | 13 | 12.5
12.6
Refere
DNA n
<i>Biola M</i>
13.1
13.2 | Targeting epigenetic modifications to cytokine genes in tolerant T cells Common mechanisms of epigenetic silencing among distinct types of tolerant T cells? Inces Methylation alterations in systemic lupus erythematosus M. Javierre, Manel Esteller and Esteban Ballestar Introduction DNA methylation: an epigenetic determinant of lymphocyte function | 213 217 220 220 229 229 233 | | 13 | 12.5
12.6
Refere
DNA n
Biola M
13.1
13.2 | Targeting epigenetic modifications to cytokine genes in tolerant T cells Common mechanisms of epigenetic silencing among distinct types of tolerant T cells? Inces Methylation alterations in systemic lupus erythematosus M. Javierre, Manel Esteller and Esteban Ballestar Introduction DNA methylation: an epigenetic determinant of lymphocyte function DNA methylation changes in lupus | 213
217
220
220
229
229
233
235 | | 13 | 12.5
12.6
Refere
DNA n
Biola M
13.1
13.2 | Targeting epigenetic modifications to cytokine genes in tolerant T cells Common mechanisms of epigenetic silencing among distinct types of tolerant T cells? nees nethylation alterations in systemic lupus erythematosus M. Javierre, Manel Esteller and Esteban Ballestar Introduction DNA methylation: an epigenetic determinant of lymphocyte function DNA methylation changes in lupus Epigenetic regulation as a therapeutic target | 213
217
220
220
229
233
235
240 | CONTENTS ix | 14 | of aut | range histone acetylation patterns in the development
coimmunity
s M. Aune, Shaojing Chang and Weisong Zhou | 247 | |----|---------|---|-----| | | 14.1 | Introduction | 247 | | | 14.2 | The histone code hypothesis | 247 | | | 14.3 | Epigenetic defects as a mechanism of disease | 249 | | | 14.4 | Analysis of the histone code | 250 | | | 14.5 | Long-range histone acetylation patterns in Th cell differentiation | 251 | | | 14.6 | Long-range histone acetylation and autoimmunity | 253 | | | 14.7 | Perspectives | 256 | | | 14.8 | Acknowledgements | 257 | | | Refere | nces | 257 | | 15 | Roqui | n defects reveal a role for the microRNA machinery | | | | | ulating autoimmunity | 261 | | | Di Yu (| and Carola G. Vinuesa | | | | 15.1 | Introduction | 261 | | | 15.2 | RNA silencing through the miRNA machinery | 262 | | | 15.3 | miRNAs regulate lymphoid cell development and immune responses | 263 | | | 15.4 | miRNAs as single drivers of immunodeficiency or inflammation | 264 | | | 15.5 | miRNAs regulate autoimmunity | 265 | | | 15.6 | Roquin regulates miRNA-mediated silencing of T cells | | | | | and represses lupus | 266 | | | 15.7 | Concluding remarks | 272 | | | 15.8 | Acknowledgements | 273 | | | Refere | ences | 274 | | 16 | prote | mmune response to post-translationally modified (citrullinated) ins: prime suspect in the pathophysiology of rheumatoid arthritis e Sebbag, Cyril Clavel, Leonor Nogueira, Jacques Arnaud and Guy Serre | 279 | | | 16.1 | Introduction | 279 | | | 16.2 | RA is associated with B cell autoreactivity to citrullinated proteins | 280 | | | 16.3 | Both ACPA and citrullinated antigenic targets are present in | | | | | the RA synovium | 284 | | | 16.4 | Autoreactivity to citrullinated proteins probably plays a role | | | | | in RA synovitis | 285 | | | 16.5 | The way ACPA could promote joint inflammation | 286 | | | 16.6 | Joint-expressed citrullinated autoantigen targets possibly | | | | | involved in a pro-inflammatory effect of ACPA | 287 | | | 16.7 | Initial triggering of the autoimmune response to citrullinated | | | | | proteins | 293 | | | 16.8 | Goals for future research | 297 | | | 16.9 | Acknowledgements | 298 | | | Refere | ences | 298 | x CONTENTS | 17 | | nes: epigenetic contributors to gender-biased autoimmunity a Rider and Nabih I. Abdou | 309 | |----|--------|---|------------| | | 17.1 | Introduction | 309 | | | 17.2 | Oestrogen receptors | 309 | | | 17.3 | Oestrogen and autoimmunity | 310 | | | 17.4 | Foxp3 and ERs | 312 | | | 17.5 | ERs and histone modifications | 313 | | | | The histone code | 313 | | | 17.7 | | 314 | | | | Pioneer factors | 314 | | | 17.9 | • | 315 | | | | ERs and cell proliferation | 315 | | | 17.11 | , , | 315 | | | | ERs and SLE | 316 | | | | Co-activators and phosphorylation | 317 | | | | Endocrine disruptors | 318 | | | | Perspectives and future directions | 318 | | | Refere | Acknowledgements | 320 | | | Kelele | nces | 321 | | 18 | | netics and systemic sclerosis
Guiducci and Marco Matucci Cerinic | 327 | | | 18.1 | Introduction | 327 | | | | Vascular alterations in SSc | 328 | | | 18.3 | | 329 | | | 18.4 | Respiratory burst and post-translational modifications in SSc | 330 | | | 18.5 | The epigenome and its environmental reprogramming | 331 | | | 18.6 | Epigenetics and SSc | 332 | | | 18.7 | Conclusions | 334 | | | Refere | nces | 335 | | 19 | select | netic regulation of B lymphocyte development and repertoire
ion: relevance to autoimmunity
F Zouali | 339 | | | 19.1 | | 220 | | | 19.1 | Introduction Initiation of B cell fate choice | 339
340 | | | 19.2 | Checkpoints of B cell tolerance to self | | | | 19.4 | Negative regulation of immunoglobulin gene joining | 340 | | | 19.4 | B cell fate commitment and immunoglobulin gene accessibility | 342
343 | | | 19.5 | Changes in chromatin structure during B cell development | 344 | | | 19.7 | Epigenetic changes through association of different | | | | 19.8 | immunoglobulin loci Epigenetic factors that allow full utilization of the immunoglobulin | 346 | | | 15.0 | repertoire | 347 | | CONTENTS | хi | |----------|----| | | | | | 19.13 | Multistep regulation of B cell maturation Altered B cell functions in systemic autoimmunity Impaired B cell tolerance to self in systemic autoimmunity Epigenetic factors underlying impaired B cell tolerance Future prospects Acknowledgement Ices | 348
349
350
351
352
353
353 | |-----|------------------------------|--|---| | PAF | RT IV | Towards Novel Epigenetic-Based Immuno-Intervention Strategies in Autoimmune Disease | | | 20 | inflam | tive effects of epigenetic modifications in experimental
matory bowel disease
Glauben, Elena Sonnenberg and Britta Siegmund | 359 | | | 20.1 | Introduction | 359 | | | 20.2 | Mechanisms of protein acetylation and deacetylation | 360 | | | 20.3 | Anti-inflammatory effect of epigenetic modifications in vitro | 362 | | | 20.4 | Impact of HDAC inhibition in models of experimental colitis | 365 | | | 20.5 | Perspectives | 368 | | | Referer | ices | 369 | | 21 | deacet
Bin Li,
Xiao Yu | etic regulation of autoimmune diseases through
ylase inhibition
Yuan Shen, Zhaocai Zhou, Xiaomin Song, Kathryn Bembas,
In Zhao, Zheng Cai, Alan Berezov, Sandra J. Saouaf,
o Zhang, Qiang Wang and Mark I. Greene | 373 | | | 21.1 | Introduction | 373 | | | 21.2 | Regulatory T cells | 374 | | | 21.3 | Epigenetic regulation of FOXP3 expression | 375 | | | 21.4 | FOXP3 acetylation and function | 375 | | | 21.5 | Protein lysine deacetylation | 376 | | | 21.6 | HDAC inhibitors in autoimmune disease | 377 | | | 21.7 | Dietary butyrate promotes lysine acetylation by inhibiting deacetylases The HDAC inhibitor butyrate affects TGF-β signalling and increases | 378 | | | | Smad3 levels | 378 | | | 21.9 | HDAC inhibitors affect immune-cell proliferation and conversion | | | | | of antigen triggered T cells into an unresponsive state | 378 | | | 21.10 | Conclusions | 379 | | | Refere | nces | 380 | | 22 | | e deacetylases and autoimmunity
Treszl, Gergő Mészáros, Gergely Toldi and Barna Vásárhelyi | 385 | | | 22.1
22.2 | Introduction Chromatin acetylation and deacetylation | 385
385 | xii CONTENTS | 22.3 | Histone deacetylases and histone acetyltransferases | 386 | |--------|--|--| | 22.4 | | 389 | | 22 5 | · · | 392 | | | | 393 | | | · ··· | 398 | | | | 398 | | | - | 398 | | Histor | ne deacetylase inhibitors as a therapeutic modality | | | | | 403 | | Steven | G. Gray | | | 23.1 | Introduction | 403 | | 23.2 | Linking the histone code with MS | 404 | | 23.3 | Neuronal traits are modulated by HDAC transcription- | | | | factor complexes | 405 | | 23.4 | Motor neurone genes modulated by HDACs | 406 | | 23.5 | | | | | mechanisms | 406 | | 23.6 | HDACs play important roles in stem cell neuronal differentiation | 407 | | 23.7 | | 407 | | 23.8 | · · · · · · · · · · · · · · · · · · · | 408 | | 23.9 | | | | | | 411 | | 23.10 | | 411 | | 23.11 | | 414 | | 23.12 | Clinical trials and caveats of HDIs | 415 | | 23.13 | Do HDIs target genes or help chaperone activity as their | | | | primary response? | 417 | | 23.14 | Future directions | 418 | | Refere | nces | 419 | | dex | | | | | 22.4 22.5 22.6 22.7 22.8 Refere Historin mu Steven 23.1 23.2 23.3 23.4 23.5 23.6 23.7 23.8 23.9 23.10 23.11 23.12 23.13 23.14 Refere | 22.4 Histone acetylation, deacetylation and transcription factors in autoimmunity 22.5 Acetylation state and lymphocyte functions 22.6 HDACs and their inhibition in autoimmune disease 22.7 Conclusions 22.8 Acknowledgements References Histone deacetylase inhibitors as a therapeutic modality in multiple sclerosis Steven G. Gray 23.1 Introduction 23.2 Linking the histone code with MS 23.3 Neuronal traits are modulated by HDAC transcription-factor complexes 23.4 Motor neurone genes modulated by HDACs 23.5 The transcription factor E2F1, HDACs and neuronal survival mechanisms 23.6 HDACs play important roles in stem cell neuronal differentiation 23.7 HDIs lead to acetylation of the Sp1 transcription factor 23.8 Immune-system effects of HDIs 23.9 HDACs and pro-inflammatory and stress-related pathways in immune settings 23.10 HATs, HDACs and the NF-κB pathway 23.11 HATs, HDACs and ER stress 23.12 Clinical trials and caveats of HDIs 23.13 Do HDIs target genes or help chaperone activity as their primary response? 23.14 Future directions References |