Photonic Crystals

Molding the Flow of Light

SECOND EDITION

John D. Joannopoulos Steven G. Johnson Joshua N. Winn Robert D. Meade

CONTENTS

Pre	face to the Second Edition	Xiii
Pre	face to the First Edition	XV
ī	Introduction	1
	Controlling the Properties of Materials	1
	Photonic Crystals	2
	An Overview of the Text	3
2	Electromagnetism in Mixed Dielectric Media	6
	The Macroscopic Maxwell Equations	6
	Electromagnetism as an Elgenvalue Problem	10
	General Properties of the Harmonic Modes	12
	Electromagnetic Energy and the Variational Principle	14
	Magnetic vs. Electric Fields The Effect of Small Perturbations	16 17
	Scaling Properties of the Maxwell Equations	20
	Discrete vs. Continuous Frequency Ranges	21
	Electrodynamics and Quantum Mechanics Compared	22
	Further Reading	24
3	Symmetries and Solid-State Electromagnetism	25
	Using Symmetries to Classify Electromagnetic Modes	25
	Continuous Translational Symmetry	27
	Index guiding	30
	Discrete Translational Symmetry	32
	Photonic Band Structures	35
	Rotational Symmetry and the Irreducible Brillouin Zone	36
	Mirror Symmetry and the Separation of Modes	37
	Time-Reversal Invariance Bloch-Wave Propagation Velocity	39 40
	procti-Marke Liphadallou Aerocity	40

viii	CONTENT
VIII	CONTENTS

	Electrodynamics vs. Quantum Mechanics Again Further Reading	42 43
4	The Multilayer Film: A One-Dimensional Photonic	
	Crystal	44
	The Multilayer Film	44
	The Physical Origin of Photonic Band Gaps	46
	The Size of the Band Gap	49
	Evanescent Modes in Photonic Band Gaps Off-Axis Propagation	52 54
	Localized Modes at Defects	54 58
	Surface States	60
	Omnidirectional Multilayer Mirrrors	61
	Further Reading	65
5	Two-Dimensional Photonic Crystals	66
•	Two-Dimensional Bloch States	66
	A Square Lattice of Dielectric Columns	68
	A Square Lattice of Dielectric Veins	72
	A Complete Band Gap for All Polarizations	74
	Out-of-Plane Propagation	75
	Localization of Light by Point Defects	78
	Point defects in a larger gap	83
	Linear Defects and Waveguides	86
	Surface States	89
	Further Reading	92
6	Three-Dimensional Photonic Crystals	94
	Three-Dimensional Lattices	94
	Crystals with Complete Band Gaps	96
	Spheres in a diamond lattice	97
	,Yablonovite	99
	The woodpile crystal	100
	Inverse opals	103
	A stack of two-dimensional crystals	105

CONTENTS	ix
Localization at a Point Defect Experimental defect modes in Yablonovite Localization at a Linear Defect Localization at the Surface Further Reading	109 113 114 116 121
7 Periodic Dielectric Waveguides Overview A Two-Dimensional Model Periodic Dielectric Waveguides in Three Dimensions Symmetry and Polarization Point Defects in Periodic Dielectric Waveguides Quality Factors of Lossy Cavities Further Reading	122 122 123 127 127 130 131
8 Photonic-Crystal Slabs Rod and Hole Slabs Polarization and Slab Thickness Linear Defects in Slabs Reduced-radius rods Removed holes Substrates, dispersion, and loss Point Defects in Slabs Mechanisms for High Q with Incomplete Gaps Delocalization Cancellation Further Reading	135 137 139 139 142 144 147 149 151
9 Photonic-Crystal Fibers Mechanisms of Confinement Index-Guiding Photonic-Crystal Fibers Endlessly single-mode fibers The scalar limit and LP modes Enhancement of nonlinear effects	156 156 158 161 163 166

x	CONTENTS

	Band-Gap Guidance in Holey Fibers Origin of the band gap in holey fibres	169 169
	Guided modes in a hollow core	172
	Bragg Fibers	175
	Analysis of cylindrical fibers	176
	Band gaps of Bragg fibers	178
	Guided modes of Bragg fibers	180
	Losses in Hollow-Core Fibers	182
	Cladding losses	183
	Inter-modal coupling	187
	Further Reading	189
10	Designing Photonic Crystals for Applications	190
- •	Overview	190
	A Mirror, a Waveguide, and a Cavity	190
	Designing a mirror	191
	Designing a militor Designing a waveguide	191
	Designing a wavegalae Designing a cavity	195
	A Narrow-Band Filter	195
	Temporal Coupled-Mode Theory	190
	The temporal coupled-mode equations	190
	The filter transmission	
	A Waveguide Bend	202
	•	203
	A Waveguide Splitter A Three-Dimensional Filter with Losses	206
		208
	Resonant Absorption and Radiation	212
	Nonlinear Filters and Bistability	214
	Some Other Possibilities	218
	Reflection, Refraction, and Diffraction	221
	Reflection	222
	Refraction and isofrequency diagrams	223
	Unusual refraction and diffraction effects	225
	Further Reading	228
	Epilogue	228

A Comparisons with Quantum Mechanics

229

CC	DNTENTS	x i
В	The Reciprocal Lattice and the Brillouin Zone The Reciprocal Lattice Constructing the Reciprocal Lattice Vectors The Brillouin Zone Two-Dimensional Lattices Three-Dimensional Lattices Miller Indices	233 233 234 235 236 238 239
С	Atlas of Band Gaps A Guided Tour of Two-Dimensional Gaps Three-Dimensional Gaps	242 243 251
D	Computational Photonics Generalities Frequency-Domain Eigenproblems Frequency-Domain Responses Time-Domain Simulations A Planewave Eigensolver Further Reading and Free Software	252 253 255 258 259 261 263
Bib	llography	265
Ina	l'ex	283