Interest Rate Modeling Theory and Practice

Contents

Preface	xiii
Acknowledgments	xvii
Author	xix
CHAPTER 1 The Basics of Stochastic Calculus	1
1.1 BROWNIAN MOTION	2
1.1.1 Simple Random Walks	2
1.1.2 Brownian Motion	4
1.1.3 Adaptive and Non-Adaptive Functions	6
1.2 STOCHASTIC INTEGRALS	8
1.2.1 Evaluation of Stochastic Integrals	11
1.3 STOCHASTIC DIFFERENTIALS AND ITO'S LEMMA	13
1.4 MULTI-FACTOR EXTENSIONS	18
1.4.1 Multi-Factor Ito's Process	19
1.4.2 Ito's Lemma	20

1.4.3 Correlated Brownian Motions	20
1.4.4 The Multi-Factor Lognormal Model	21
1.5 MARTINGALES	22
CHAPTER 2 The Martingale Representation Theorem	27
2.1 CHANGING MEASURES WITH BINOMIAL MODELS	28
2.1.1 A Motivating Example	28
2.1.2 Binomial Trees and Path Probabilities	30
2.2 CHANGE OF MEASURES UNDER BROWNIAN FILTRATION	34
2.2.1 The Radon-Nikodym Derivative of a Brownian Path	34
2.2.2 The CMG Theorem	37
2.3 THE MARTINGALE REPRESENTATION THEOREM	38
2.4 A COMPLETE MARKET WITH TWO SECURITIES	39
2.5 REPLICATING AND PRICING OF CONTINGENT	
CLAIMS	40
2.6 MULTI-FACTOR EXTENSIONS	43
2.7 A COMPLETE MARKET WITH MULTIPLE SECURITIES	44
2.7.1 Existence of a Martingale Measure	44
2.7.2 Pricing Contingent Claims	47
2.8 THE BLACK-SCHOLES FORMULA	48
2.9 NOTES	51
CHAPTER 3 Interest Rates and Bonds	59
3.1 INTEREST RATES AND FIXED-INCOME INSTRUMENTS	60
3.1.1 Short Rate and Money Market Accounts	60
3.1.2 Term Rates and Certificates of Deposit	61
3.1.3 Bonds and Bond Markets	62
3.1.4 Quotation and Interest Accrual	64
3.2 YIELDS	66
3.2.1 Yield to Maturity	66

3.2.2 Par Bonds, Par Yields, and the Par Yield Curve	69
3.2.3 Yield Curves for U.S. Treasuries	69
3.3 ZERO-COUPON BONDS AND ZERO-COUPON	
YIELDS	70
3.3.1 Zero-Coupon Bonds	70
3.3.2 Bootstrapping the Zero-Coupon Yields	72
3.3.2.1 Future Value and Present Value	73
3.4 FORWARD RATES AND FORWARD-RATE	
AGREEMENTS	73
3.5 YIELD-BASED BOND RISK MANAGEMENT	75
3.5.1 Duration and Convexity	75
3.5.2 Portfolio Risk Management	78
CHAPTER 4 The Heath-Jarrow-Morton Model	81
4.1 LOGNORMAL MODEL: THE STARTING POINT	83
4.2 THE HJM MODEL	86
4.3 SPECIAL CASES OF THE HJM MODEL	89
4.3.1 The Ho–Lee Model	90
4.3.2 The Hull-White (or Extended Vasicek) Model	91
4.4 ESTIMATING THE HJM MODEL FROM YIELD DATA	94
4.4.1 From a Yield Curve to a Forward-Rate Curve	94
4.4.2 Principal Component Analysis	99
4.5 A CASE STUDY WITH A TWO-FACTOR MODEL	105
4.6 MONTE CARLO IMPLEMENTATIONS	107
4.7 FORWARD PRICES	110
4.8 FORWARD MEASURE	113
4.9 BLACK'S FORMULA FOR CALL AND PUT OPTIONS	116
4.9.1 Equity Options under the Hull-White Model	118
4.9.2 Options on Coupon Bonds	122
4.10 NUMERAIRES AND CHANGES OF MEASURE	125
4.11 NOTES	127

CHAPTER 5 Short-Rate Models and Lattice Implementation	133
5.1 FROM SHORT-RATE MODELS TO FORWARD-RATE	
MODELS	134
5.2 GENERAL MARKOVIAN MODELS	137
5.2.1 One-Factor Models	144
5.2.2 Monte Carlo Simulations for Options Pricing	146
5.3 BINOMIAL TREES OF INTEREST RATES	147
5.3.1 A Binomial Tree for the Ho–Lee Model	148
5.3.2 Arrow-Debreu Prices	149
5.3.3 A Calibrated Tree for the Ho-Lee Model	152
5.4 A GENERAL TREE-BUILDING PROCEDURE	156
5.4.1 A Truncated Tree for the Hull-White Model	156
5.4.2 Trinomial Trees with Adaptive Time Steps	162
5.4.3 The Black–Karasinski Model	163
CHAPTER 6 The LIBOR Market Model	167
6.1 LIBOR MARKET INSTRUMENTS	167
6.1.1 LIBOR Rates	168
6.1.2 Forward-Rate Agreements	169
6.1.3 Repurchasing Agreement	171
6.1.4 Eurodollar Futures	171
6.1.5 Floating-Rate Notes	172
6.1.6 Swaps	174
6.1.7 Caps	177
6.1.8 Swaptions	178
6.1.9 Bermudan Swaptions	179
6.1.10 LIBOR Exotics	179
6.2 THE LIBOR MARKET MODEL	182
6.3 PRICING OF CAPS AND FLOORS	187
6.4 PRICING OF SWAPTIONS	188
6.5 SPECIFICATIONS OF THE LIBOR MARKET MODEL	196
6.6 monte carlo simulation method	200
6.6.1 The Log-Euler Scheme	200

662 Calculation of the Constant	201
6.6.2 Calculation of the Greeks	201
6.6.3 Early Exercise	202
CHAPTER 7 Calibration of LIBOR Market Model	211
7.1 IMPLIED CAP AND CAPLET VOLATILITIES	212
7.2 CALIBRATING THE LIBOR MARKET MODEL TO CAPS	216
7.3 Calibration to caps, swaptions, and input correlations	218
7.4 CALIBRATION METHODOLOGIES	224
7.4.1 Rank-Reduction Algorithm	224
7.4.2 The Eigenvalue Problem for Calibrating	
to Input Prices	237
7.5 SENSITIVITY WITH RESPECT TO THE INPUT PRICES	250
7.6 NOTES	253
CHAPTER 8 Volatility and Correlation Adjustments	255
8.1 ADJUSTMENT DUE TO CORRELATIONS	256
8.1.1 Futures Price versus Forward Price	256
8.1.2 Convexity Adjustment for LIBOR Rates	261
8.1.3 Convexity Adjustment under the Ho–Lee Model	263
8.1.4 An Example of Arbitrage	264
8.2 ADJUSTMENT DUE TO CONVEXITY	266
8.2.1 Payment in Arrears versus Payment	200
in Advance	266
8.2.2 Geometric Explanation for Convexity Adjustment	268
8.2.3 General Theory of Convexity Adjustment	269
8.2.4 Convexity Adjustment for CMS and	
CMT Swaps	273
8.3 TIMING ADJUSTMENT	276
8.4 QUANTO DERIVATIVES	278
8.5 NOTES	284

CHAPTER 9 Affine Term Structure Models	287
9.1 AN EXPOSITION WITH ONE-FACTOR MODELS	288
9.2 ANALYTICAL SOLUTION OF RICCARTI	
equations	297
9.3 PRICING OPTIONS ON COUPON BONDS	301
9.4 DISTRIBUTIONAL PROPERTIES OF SQUARE-ROOT	
PROCESSES	302
9.5 MULTI-FACTOR MODELS	303
9.5.1 Admissible ATSMs	305
9.5.2 Three-Factor ATSMs	306
9.6 SWAPTION PRICING UNDER ATSMs	310
9.7 NOTES	315
References	319
Index	327