
Lecture Notes on Computational Structural Biology

Contents

Preface			vii
1	Introduction		1
	1.1	Protein Structure	1
	1.2	Structure Determination	9
	1.3	Dynamics Simulation	13
		The Myth of Protein Folding	18
2	X-ra	ay Crystallography Computing	27
	2.1	The Phase Problem	27
	2.2	Least Squares Solutions	37
	2.3	Entropy Maximization	46
	2.4	Indirect Methods	54
3	NMR Structure Determination		63
	3.1	Nuclear Magnetic Resonance	63
	3.2	Distance Geometry	73
	3.3	Distance-based Modeling	81
	3.4	Structural Analysis	87
4	Potential Energy Minimization		99
		Potential Energy Function	100
		Local Optimization	107
		Global Optimization	111
		Energy Transformation	116
5	Molecular Dynamics Simulation		125
		Equations of Motion	125

xii Computational Structural Biology

5.2	Initial-Value Problem	129	
5.3	Boundary-Value Problem	138	
5.4	Normal Mode Analysis	145	
6 Kno	Knowledge-based Protein Modeling		
6.1	Sequence/Structural Alignment	156	
6.2	Fold Recognition/Inverse Folding	165	
6.3	Knowledge-based Structural Refinement	169	
6.4	Structural Computing and Beyond	173	
Append	lix A Design and Analysis of Computer Algorithms	182	
A.1	Evaluation of Algorithms	183	
.A.2	Intractability	188	
A.3	Lists, Arrays, Graphs, and Trees	192	
	Sorting, Searching, and Optimization	195	
Append	lix B Numerical Methods	202	
B.1	Numerical Linear Algebra	202	
B.2	Numerical Optimization	210	
	Numerical Solutions to Initial-Value Problems	218	
	Numerical Solutions to Boundary-Value Problems	222	
Index		229	