Julien Aymeric Beauquel

Computational Fluid Dynamics Modelling

Flow Behaviour in the Combustion Chamber of a Spark Ignition Engine

> VDM Verlag Dr. Müller

Nomenclature, symbols and abbreviations

Chapter 1:	Current Status of CFD Modelling on Flows Inside the IC E	ngine
1.1 CFD	Modelling on Flows Inside IC Engines and Methodologies	1-1
1.1.1	Experimental investigation and CFD modelling on flows in	IC engine:
		1-1
1.1.2	Turbulence phenomena inside IC engines	1-5
1.1.3	CFD modelling considerations	1-7
1.1.4	Overview of simulation strategies	1-18
1.2 Reca	pitulation and Current Study Objectives	1-23
Referen	ces	1-25
Figures		1-28
Chapter 2:	Experimental Investigation of Steady Flow Inside an Open	Cylinder
2.1 Intro	oduction to the Devices for Flow Field Measurement	2-1
2.1.1	Thermal anemometry	2-1
2.1.2	Laser-Doppler anemometry and phase-Doppler anemometry	2-2
2.1.3	Pitot tubes	2-5
2.2 Expe	erimental Setup	2-7
2.3 Expe	eriment Method	2-12
2.4 Expe	erimental Results and Analysis of Steady Flow in the Cylindo	er
		2-13
2.4.1	Case 1: 3mm valve lift	2-15
2.4.2	Case 2: 6mm valve lift	2-16
2.4.3	Case 3: 9mm valve lift	2-17
2.5 Conc	luding Remarks on Experimental Work	2-18
Reference	res	2-19
Figures		2-20

Chapter 3: CFD Modelling of Steady Flow Inside a Cylinder	
3.1 Introduction	
3.2 Acquiring Cylinder Geometry by the Method of Digitalisation	3-2
3.2.1 Cylinder head scan	3-2
3.2.2 Inlet ports casting scan	3-4
3.3 CFD Modelling	3-7
3.3.1 Point data acquisition	3-7
3.3.2 Pre-CFD model creation	3-8
3.3.3 Full Gambit modelling (3 model valve lift)	3-12
3.3.4 Mesh quality	3-12
3.3.5 Numerical modelling	3-17
3.4 Results of Steady Flow Simulation and Discussion	3-20
3.4.1 Flow behaviour inside the cylinder	3-20
3.4.2 Y velocity component distribution inside the cylinder	3-23
3.4.3 Effect of valve lift	3-27
3.5 Conclusions	3-28
References	3-29
Figures	3-30
Chapter 4: CFD Modelling of Transient Flow Inside the Cylinder: with Dynamic Mesh	Simulation
4.1 Introduction	4-1
4.2 Description of Piston Displacement	4-1
4.3 Valve Lift	4-5
4.4 Dynamic Mesh Modelling	4-11
4.4.1 Two-dimensional modelling of the flow inside a cylinder	4-11
4.4.2 Dynamic mesh type	4-12
4.4.3 Geometry modifications	4-14
4.4.4 Numerical details and boundary conditions	4-15

4.4.5 Animation of the flow behaviour

4-18

4.4.6	The use of cutting-planes for reporting the results	4-18
4.4.7	Mesh quality	4-21
4.5 Concluding Remarks on the Use of Dynamic Mesh		4-25
Figures		4-26
Chapter 5:	CFD Modelling of Transient Flow Inside the Cylinder:	Dynamic
Flow Behav	viour	
5.1 Introduction		5-1
5.2 Tran	sient Flow Behaviour Inside the Cylinder	5-2
5.2.1	Evolution of volume averaged static pressure in the cylinder	5-2
5.2.2	Evolution of tumble and swirl phenomena inside the cylinder	5-4
5.2.3	Turbulence field inside the cylinder	5-10
5.2.4	Mass flow rate evaluation for transient flow	5-10
5.3 Disc	ussion	5-12
5.4 Cond	clusions	5-13
Referen	ces	5-15
Figures		5-16
Chapter 6:	Conclusions Derived From the Study	
6.1 Cond	clusions	6-1
6.1.1	Effects of cylinder geometries on flow behaviour	6-2
6.1.2	CFD modelling of steady flow inside the cylinder	6-2
6.1.3	CFD modelling of transient flow inside the cylinder	6-3
6.2 Recommendations for Further Work		6-4
Appendices	S	A-1