Ninth Edition Farid Golnaraghi • Benjamin C. Kuo ## Contents | Preface | e iv | | | 2-2-8 | Quadratic Poles and Zeros 39 | |---------------|----------------|---|------|-----------|--| | 110, | | | | 2-2-9 | Pure Time Delay, $e^{-j\omega T_d}$ 42 | | 5. 57° \$48.5 | Feneral e | | | 2-2-10 | Magnitude-Phase Plot 44 | | | ction 1 | | | 2-2-11 | Gain- and Phase-Crossover Points 46 | | | | - | | 2-2-12 | Minimum-Phase and Nonminimum- | | 1-1 | Introduction | | | | Phase Functions 47 | | | 1-1-1 | Basic Components of a Control | 2-3 | Introduct | tion to Differential Equations 49 | | | | System 2 | | 2-3-1 | Linear Ordinary Differential | | | 1-1-2 | Examples of Control-System | | | Equations 49 | | | | Applications 2 | | 2-3-2 | Nonlinear Differential Equations 49 | | | 1-1-3 | Open-Loop Control Systems | | 2-3-3 | First-Order Differential | | | | (Nonfeedback Systems) 5 | | | Equations: State Equations 50 | | | 1-1-4 | Closed-Loop Control Systems | | 2 - 3 - 4 | Definition of State Variables 50 | | | | (Feedback Control Systems) 7 | | 2-3-5 | The Output Equation 51 | | 1-2 | | eedback, and What Are Its Effects? 8 | 2-4 | Laplace ' | Transform 52 | | | 1-2-1 | Effect of Feedback on Overall Gain 8 | | 2-4-1 | Definition of the Laplace | | | 1-2-2 | Effect of Feedback on Stability 9 | | | Transform 52 | | | 1-2-3 | Effect of Feedback on External | | 2-4-2 | Inverse Laplace Transformation 54 | | 1.0 | m (17 | Disturbance or Noise 10 | | 2-4-3 | Important Theorems of the Laplace | | 1-3 | | eedback Control Systems 11 | | | Transform 54 | | | 1-3-I | Linear versus Nonlinear Control | 2-5 | | Laplace Transform by | | | 1.0.0 | Systems 11 | | | raction Expansion 57 | | | 1-3-2 | Time-Invariant versus Time-Varying | | 2-5-1 | Partial-Fraction Expansion 57 | | | 0 | Systems 12 | 2-6 | | ion of the Laplace Transform | | 1-4 | Summary | 14 | | | olution of Linear Ordinary | | b- 6343 | eree 2 | | | | tial Equations 62 | | | matical Fou | undation 16 | | 2-6-1 | First-Order Prototype System 63 | | | | | | 2-6-2 | Second-Order Prototype | | 2-1 | - | Variable Concept 16 | | - 1 | System 64 | | | 2-1-1 | Complex Numbers 16 | 2-7 | | Response and Transfer Functions | | | 2-1-2 | Complex Variables 18 | | | r Systems 67 | | | 2-1-3 | Functions of a Complex Variable 19 | | 2-7-1 | Impulse Response 67 | | | 2-1-4 | Analytic Function 20 | | 2-7-2 | Transfer Function (Single-Input, | | | 2-1-5 | Singularities and Poles of a | | 2 = 2 | Single-Output Systems) 70 | | | 0.1.0 | Function 20 | | 2-7-3 | Proper Transfer Functions 71 | | | 2-1-6
2-1-7 | Zeros of a Function 20 | | 2-7-4 | Characteristic Equation 71 | | 2-2 | | Polar Representation 22 | | 2-7-5 | Transfer Function (Multivariable | | 2-2, | | 7-Domain Plots 26 | 2.0 | o. Lili | Systems) 71 | | | 2-2-1 | Computer-Aided Construction of the | 2-8 | | of Linear Control Systems 72 | | | 2-2-2 | Frequency-Domain Plots 26
Polar Plots 27 | 2-9 | | l-Input, Bounded-Output | | | | | | | Stability—Continuous-Data | | | 2-2-3 | Bode Plot (Corner Plot or Asymptotic Plot) 32 | 0.10 | Systems | | | | 2-2-4 | | 2-10 | | ship between Characteristic Equation | | | 2-2-4 | Real Constant K 34 | 0.11 | | ad Stability 74 | | | ∠- ∠ -0 | Poles and Zeros at the Origin, $(j\omega)^{\pm\rho}$ 34 | 2-11 | | out and Asymptotic Stability of | | | 2-2-6 | Simple Zero, $1 + j\omega T = 37$ | 0.10 | | ous-Data Systems 74 | | | 2-2-0 | Simple Pole, $1/(1+j\omega T)$ 39 | 2-12 | | s of Determining Stability 77 | | | ۵-۵-۱ | Sample role, $1/(1 \pm j\omega r)$ 38 | 2-13 | noutn-H | Iurwitz Criterion 78 | | | 2-13-1 | Routh's Tabulation 79 | | 4-1-5 | Backlash and Dead Zone (Nonlinear | |-------|---------------|--|-----------|---------------|---------------------------------------| | | 2-13-2 | Special Cases when Routh's | | | Characteristics) 164 | | | | Tabulation Terminates | 4-2 | | on to Modeling of Simple Electrical | | | | Prematurely 80 | | | 1.65 | | 2-14 | MATLAB 7 | Fools and Case Studies 84 | | 4-2-1 | Modeling of Passive Electrical | | | 2-14-1 | Description and Use of Transfer | | | Elements 165 | | | | Function Tool 84 | | 4-2-2 | Modeling of Electrical Networks 165 | | | 2-14-2 | MATLAB Tools for Stability 85 | 4-3 | | of Active Electrical Elements: | | 2-15 | Summary | 90 | | | d Amplifiers 172 | | | | | | 4-3-1 | The Ideal Op-Amp 173 | | | apyen o | | | 4-3-2 | Sums and Differences 173 | | Block | Diagrams a | nd Signal-Flow Graphs 104 | | 4-3-3 | First-Order Op-Amp | | 3-1 | Block Diag | rams 104 | | | Configurations 174 | | | 3-1-1 | Typical Elements of Block Diagrams | 4-4 | Introduction | on to Modeling of Thermal Systems 177 | | | * | in Control Systems 106 | | 4-4-1 | Elementary Heat Transfer | | | 3-1-2 | Relation between Mathematical | | | Properties 177 | | | 0 x - | Equations and Block Diagrams 109 | 4-5 | Introductio | on to Modeling of Fluid Systems 180 | | | 3-1-3 | Block Diagram Reduction 113 | | 4-5-1 | Elementary Fluid and Gas System | | | 3-1-4 | Block Diagram of Multi-Input | | | Properties 180 | | | 0-1-4 | Systems—Special Case: Systems with | 4-6 | Sensors an | d Encoders in Control Systems 189 | | | | a Disturbance 115 | | 4-6-1 | Potentiometer 189 | | | 3-1-5 | Block Diagrams and Transfer | | 4-6-2 | Tachometers 194 | | | 2-1-0 | Functions of Multivariable | | 4-6-3 | Incremental Encoder 195 | | | | Systems 117 | 4-7 | | rs in Control Systems 198 | | 0.0 | Cianal Elor | | | 4-7-1 | Basic Operational Principles of DC | | 3-2 | | v Graphs (SFGs) 119 Basic Elements of an SFG 119 | | | Motors 199 | | | 3-2-1 | | | 4-7-2 | Basic Classifications of PM DC | | | 3-2-2 | Summary of the Basic Properties of | | – | Motors 199 | | | 0.00 | SFG 120 | | 4-7-3 | Mathematical Modeling of PM DC | | | 3-2-3 | Definitions of SFG Terms 120 | | 1.0 | Motors 201 | | | 3-2-4 | SFG Algebra 123 | 4-8 | Systems w | ith Transportation Lags | | | 3-2-5 | SFG of a Feedback Control | 1.0 | (Time Del | | | | 2.2.0 | System 124 | | 4-8-1 | Approximation of the Time-Delay | | | 3-2-6 | Relation between Block Diagrams | | 4-0-1 | Function by Rational | | | | and SFGs 124 | | | Functions 206 | | | 3-2-7 | Gain Formula for SFG 124 | 4-9 | Lincorizati | ion of Nonlinear Systems 206 | | | 3-2-8 | Application of the Gain Formula | 4-9 | 4-9-1 | Linearization Using Taylor Series: | | | | between Output Nodes and | | 4-0-1 | Classical Representation 207 | | | | Noninput Nodes 127 | | 400 | Linearization Using the State Space | | | 3-2-9 | Application of the Gain Formula to | | 4-9-2 | | | | | Block Diagrams 128 | (10 | A a la aria a | Approach 207 | | | 3-2-10 | Simplified Gain Formula 129 | 4-10 | Analogies | | | 3-3 | MATLAB | Tools and Case Studies 129 | 4-11 | Case Stud | | | 3-4 | Summary | 133 | 4-12 | MATLAB | | | | | | 4-13 | Summary | 223 | | | appers. | I Comment | 5 800 505 | apter 5 | | | | | dation and Background | | | alysis of Control Systems 253 | | Mate | rial: Modelii | ng of Dynamic Systems 147 | 111116- | | | | 4-1 | Introducti | on to Modeling of Mechanical | 5-1 | Time Res | ponse of Continuous-Data Systems: | | | | 148 | | Introducti | ion 253 | | | 4-1-1 | Translational Motion 148 | 5-2 | Typical To | est Signals for the Time Response of | | | 4-1-2 | Rotational Motion 157 | | Control S | ystems 254 | | | 4-1-3 | Conversion between Translational and | 5-3 | | Step Response and Time-Domain | | | | Rotational Motions 161 | | | ions 256 | | | 4-1-4 | Gear Trains 162 | 5-4 | | ate Error 258 | | | | | | | | | | 5 - 4-1 | Steady-State Error of Linear | \$ 608s | AFTER 6 | | |------|----------------|--|---------|--------------|---| | | | Continuous-Data Control Systems 258 | The C | Control Lab | 337 | | | 5-4-2 | Steady-State Error Caused by | 6-1 | Introductio | on 337 | | | mı i) | Nonlinear System Elements 272 | 6-2 | | n of the Virtual Experimental | | 5-5 | _ | onse of a Prototype First-Order | | System 3 | | | - 0 | System 2 | 74
Response of a Prototype | | 6-2-1 | Motor 339 | | 5-6 | Second Or | der System 275 | | 6-2-2 | Position Sensor or Speed Sensor 339 | | | 5-6-1 | Damping Ratio and Damping | | 6-2-3 | Power Amplifier 340 | | | <i>0</i> -0-1. | Factor 277 | | 6-2-4 | Interface 340 | | | 5-6-2 | Natural Undamped Frequency 278 | 6-3 | _ | n of SIMLab and Virtual Lab | | | 5-6-3 | Maximum Overshoot 280 | | Software | 340 | | | 5-6-4 | Delay Time and Rise Time 283 | 6-4 | | and Virtual Experiments 345 | | | 5-6-5 | Settling Time 285 | | 6-4-1 | Open-Loop Speed 345 | | 5-7 | Speed and | Position Control of a DC Motor 289 | | 6-4-2 | Open-Loop Sine Input 347 | | | 5-7-1 | Speed Response and the Effects of | | 6-4-3 | Speed Control 350 | | | | Inductance and Disturbance-Open | 6-5 | 6-4-4 | Position Control 352
oject 1—Robotic Arm 354 | | | | Loop Response 289 | 6-6 | | oject 1—Robbule ATII 554
oject 2—Quarter-Car Model 357 | | | 5-7-2 | Speed Control of DC Motors: | 0-0 | 6-6-1 | Introduction to the Quarter-Car | | | | Closed-Loop Response 291 | | 0-0-1
i | Model 357 | | | 5-7-3 | Position Control 292 | | 6-6-2 | Closed-Loop Acceleration | | 5-8 | | nain Analysis of a Position-Control | | | Control 359 | | | , | 93 | | 6-6-3 | Description of Quarter Car | | | 5-8-1 | Unit-Step Transient Response 294 | | | Modeling Tool 360 | | | 5-8-2
5-8-3 | The Steady-State Response 298 Time Response to a Unit-Ramp | 1 | 6-6-4 | Passive Suspension 364 | | | J-0-J | Input 298 | | 6-6-5 | Closed-Loop Relative Position | | | 5-8-4 | Time Response of a Third-Order | | | Control 365 | | | 001 | System 300 | | 6-6-6 | Closed-Loop Acceleration | | 5-9 | Basic Con | trol Systems and Effects of | | | Control 366 | | | | les and Zeros to Transfer | 6-7 | Summary | 367 | | | Functions | | a 03 | armer y | | | |
5-9-1 | Addition of a Pole to the | | Locus Analy | vsis 372 | | | | Forward-Path Transfer Function: | | | | | | | Unity-Feedback Systems 305 | 7-1 | Introducti | | | | 5-9-2 | Addition of a Pole to the | 7-2 | Loci (RL) | perties of the Root | | | | Closed-Loop Transfer Function 307 | 7-3 | | of the Root Loci 377 | | | 5-9-3 | Addition of a Zero to the | 1-0 | 7-3-1 | $K = 0$ and $K = \pm \infty$ Points 377 | | | 5 0. | Closed-Loop Transfer Function 308 | | 7-3-2 | Number of Branches on the Root | | | 5-9-4 | Addition of a Zero to the | | | Loci 378 | | | | Forward-Path Transfer Function: | | 7-3-3 | Symmetry of the RL 378 | | 5-10 | Daminant | Unity-Feedback Systems 309 Poles and Zeros of Transfer | | 7-3-4 | Angles of Asymptotes of the RL: | | 9-10 | Functions | | | | Behavior of the RL at $ s = \infty$ 378 | | | 5-10-1 | Summary of Effects of Poles and | | 7-3-5 | Intersect of the Asymptotes | | | 0-10-1 | Zeros 313 | | | (Centroid) 379 | | | 5-10-2 | The Relative Damping Ratio 313 | | 7-3-6 | Root Loci on the Real Axis 380 | | | 5-10-3 | The Proper Way of Neglecting the | | 7-3-7 | Angles of Departure and Angles of | | | | Insignificant Poles with Consideration | | | Arrival of the RL 380 | | | | of the Steady-State Response 313 | | 7-3-8 | Intersection of the RL with the | | 5-11 | Basic Con | trol Systems Útilizing Addition of Poles | | # 0 0 | Imaginary Axis 380 | | | and Zeros | | | 7-3-9 | Breakaway Points (Saddle Points) | | 5-12 | MATLAB | | | 7 9 10 | on the RL 380 | | 5-13 | Summary | 320 | | 7-3-10 | The Root Sensitivity 382 | | | | | | | | | 7-4 | Design Aspects of the Root Loci 385 7-4-1 Effects of Adding Poles and Zeros | 8-12 | Relative
Magnitud
8-12-1 | Stability Related to the Slope of the
de Curve of the Bode Plot 459
Conditionally Stable System 459 | |-------------|--|-----------|--------------------------------|---| | 7-5 | to $G(s)H(s)$ 385
Root Contours (RC): Multiple-Parameter
Variation 393 | 8-13 | | Analysis with the Magnitude-Phase | | 7-6 | MATLAB Tools and Case Studies 400 | 8-14 | Constant | -M Loci in the Magnitude-Phase Plane: | | 7-7 | Summary 400 | 0.15 | | nols Chart 463 | | k 6084. | aptet e | 8-15 | | Chart Applied to Nonunity-Feedback | | | ency-Domain Analysis 409 | 8-16 | Systems | ty Studies in the Frequency Domain 470 | | | • | 8-17 | | B Tools and Case Studies 472 | | 8-1 | Introduction 409 8-1-1 Frequency Response of | 8-18 | Summar | | | | Closed-Loop Systems 410 | a. 8778.8 | aptera o | | | | | 12. | | ol Systems 487 | | 8-2 | M_r , ω_r , and Bandwidth of the Prototype | _ | | | | | Second-Order System 413 | 9-1 | | tion 487 | | | 8-2-1 Resonant Peak and Resonant | | 9-1-1 | Design Specifications 487 | | | Frequency 413 | | 9-1-2 | Controller Configurations 489 | | 0.0 | 8-2-2 Bandwidth 416 | 0.0 | 9-1-3 | Fundamental Principles of Design 491 | | 8-3 | Effects of Adding a Zero to the Forward-Path | 9-2 | 9-2-1 | with the PD Controller 492 Time-Domain Interpretation of PD | | 0.4 | Transfer Function 418 | | 9-2-1 | Control 494 | | 8-4 | Effects of Adding à Pôle to the Forward-Path Transfer Function 424 | | 9-2-2 | Frequency-Domain Interpretation of | | 8-5 | Nyquist Stability Criterion: Fundamentals 426 | | 0- 2-2 | PD Control 496 | | o- <i>u</i> | 8-5-1 Stability Problem 427 | | 9-2-3 | Summary of Effects of PD Control 497 | | | 8-5-2 Definition of Encircled and | 9-3 | | with the PI Controller 511 | | | Enclosed 428 | 0.0 | 9-3-1 | Time-Domain Interpretation and | | | 8-5-3 Number of Encirclements and | | 0 0 1 | Design of PI Control 513 | | | Enclosures 429 | | 9-3-2 | Frequency-Domain Interpretation and | | | 8-5-4 Principles of the Argument 429 | | | Design of PI Control 514 | | | 8-5-5 Nyquist Path 433 | 9-4 | Design v | with the PID Controller 528 | | | 8-5-6 Nyquist Criterion and the $L(s)$ or | 9-5 | Design v | with Phase-Lead Controller 532 | | | the $G(s)H(s)$ Plot 434 | | 9-5-1 | Time-Domain Interpretation and | | 8-6 | Nyquist Criterion for Systems with | | | Design of Phase-Lead Control 534 | | | Minimum-Phase Transfer Functions 435 | | 9-5-2 | Frequency-Domain Interpretation and | | | 8-6-1 Application of the Nyquist Criterion | | | Design of Phase-Lead Control 535 | | | to Minimum-Phase Tranfer | | 9-5-3 | Effects of Phase-Lead | | | Functions That Are Not Strictly | | | Compensation 554 | | | Proper 436 | | 9-5-4 | Limitations of Single-Stage Phase-Lead | | 8-7 | Relation between the Root Loci and the | | ~ | Control 555 | | | Nyquist Plot 437 | | 9-5-5 | Multistage Phase-Lead Controller 555 | | 8-8 | Illustrative Examples: Nyquist Criterion | 0.0 | 9-5-6 | Sensitivity Considerations 559 | | | for Minimum-Phase Transfer | 9-6 | _ | with Phase-Lag Controller 561 | | 0.0 | Functions 440 | | 9-6-1 | Time-Domain Interpretation and | | 8-9 | Effects of Adding Poles and Zeros | | 9-6-2 | Design of Phase-Lag Control 561
Frequency-Domain Interpretation | | | to $L(s)$ on the Shape of the Nyquist | | 9-0-2 | and Design of Phase-Lag Control 563 | | 0 10 | Plot 444 Polativa Stability Cain Margin and Phase | | 9-6-3 | Effects and Limitations of Phase-Lag | | 8-10 | Relative Stability: Gain Margin and Phase | | 0-0-0 | Control 574 | | | Margin 449
8-10-1 Gain Margin (GM) 451 | 9-7 | Design | with Lead–Lag Controller 574 | | | 8-10-2 Phase Margin (PM) 453 | 9-8 | | ro-Cancellation Design: Notch Filter 576 | | 8-11 | Stability Analysis with the Bode Plot 455 | | 9-8-1 | Second-Order Active Filter 579 | | V 11 | 8-11-1 Bode Plots of Systems with Pure | | 9-8-2 | Frequency-Domain Interpretation and | | | Time Delays 458 | | | Design 580 | | | | · · | | | | |-------|---------------------------------------|---------------------------------------|--|--------------|--| | 9-9 | Forward a | and Feedforward Controllers 588 | | 10-8-1 | Characteristic Equation from a | | 9-10 | Design of | Robust Control Systems 590 | | | Differential Equation 695 | | 9-11 | Minor-Loc | op Feedback Control 601 | | 10-8-2 | Characteristic Equation from a Transfer | | | 9-11-1 | Rate-Feedback or | | | Function 696 | | | | Tachometer-Feedback Control 601 | | 10-8-3 | Characteristic Equation from State | | | 9-11-2 | Minor-Loop Feedback Control with | | | Equations 696 | | | | Active Filter 603 | | 10-8-4 | Eigenvalues 697 | | 9-12 | A Hydrau | lic Control System 605 | | 10-8-5 | Eigenvectors 697 | | | 9-12-1 | Modeling Linear Actuator 605 | | 10-8-6 | Generalized Eigenvectors 698 | | | 9-12-2 | Four-Way Electro-Hydraulic | 10-9 | Similarity ' | Transformation 699 | | | | Valve 606 | | 10-9-1 | Invariance Properties of the Similarity | | | 9-12-3 | Modeling the Hydraulic System 612 | | | Transformations 700 | | | 9-12-4 | Applications 613 | | 10-9-2 | Controllability Canonical Form (CCF) | | 9-13 | Controller | Design 617 | | | 701 | | | 9-13-1 | P Control 617 | | 10-9-3 | Observability Canonical Form (OCF) 703 | | | 9-13-2 | PD Control 621 | | 10-9-4 | Diagonal Canonical Form (DCF) 704 | | | 9-13-3 | PI Control 626 | | 10-9-5 | Jordan Canonical Form (JCF) 706 | | | 9-13-4 | PID Control 628 | 10-10 | Decompos | sitions of Transfer Functions 707 | | 9-14 | MATLAB | Tools and Case Studies 631 | | 10-10-1 | Direct Decomposition 707 | | 9-15 | Plotting T | utorial 647 | | 10-10-2 | Cascade Decomposition 712 | | 9-16 | Summary | 649 | 1 | 10-10-3 | Parallel Decomposition 713 | | | | | 10-11 | Controllab | oility of Control Systems 714 | | | apyen 16 | | | 10-11-1 | General Concept of Controllability | | State | Variable Ai | nalysis 673 | | | 716 | | 10-1 | Introducti | ion 673 | | 10-11-2 | Definition of State Controllability 716 | | 10-2 | Block Dia | grams, Transfer Functions, and State | | 10-11-3 | Alternate Tests on Controllability 717 | | | Diagrams | | 10-12 | Observabil | lity of Linear Systems 719 | | | 10-2-1 | Transfer Functions (Multivariable | | 10-12-1 | Definition of Observability 719 | | | | Systems) 673 | | 10 - 12 - 2 | Alternate Tests on Observability 720 | | | 10-2-2 | Block Diagrams and Transfer Functions | 10-13 | | ip among Controllability, | | | | of Multivariable Systems 674 | | | lity, and Transfer Functions 721 | | | 10-2-3 | State Diagram 676 | 10-14 | | Theorems on Controllability and | | | 10-2-4 | From Differential Equations to State | | Observabi | | | | | Diagrams 678 | 10-15 | | y: Magnetic-Ball Suspension | | | 10-2-5 | From State Diagrams to Transfer | | System 7 | | | | | Function 679 | 10-16 | | Back Control 728 | | | 10-2-6 | From State Diagrams to State and | 10-17 | | ement Design Through State | | | | Output Equations 680 | | Feedback | | | 10-3 | | atrix Representation of State | 10-18 | | dback with Integral Control 735 | | | Equations | | 10-19 | 40 40 4 | Tools and Case Studies 741 | | 10-4 | | nsition Matrix 684 | | 10-19-1 | Description and Use of the State-Space | | | 10-4-1 | Significance of the State-Transition | | 10.10.0 | Analysis Tool 741 | | | | Matrix 685 | | 10-19-2 | Description and Use of tfsym for | | | 10-4-2 | Properties of the State-Transition | 10.20 | | State-Space Applications 748 | | | | Matrix 685 | 10-20 | Summary | 751 | | 10-5 | | nsition Equation 687 | | | | | | 10-5-1 | State-Transition Equation Determined | p- 8868 | 9894 773 | \$ | | | | from the State Diagram 689 | Appen | dices can be | e found on this book's companion Web site: | | 10-6 | Y Y | | www.wiley.com/college/golnaraghi. | | | | 10 = | High-Order Differential Equations 691 | | » Appendix A | | | | 10-7 | * | | Elementary Matrix Theory and Algebra A-1 | | | | 10.0 | Transfer Functions 693 | | | | | | 10-8 | | ristic Equations, Eigenvalues, | A-1 | | y Matrix Theory A-1 | | | and Eiger | nvectors 695 | | A-1-1 | Definition of a Matrix A-2 | | |
 | | | | | A.2-1 Equality of Matrices A.5 A.2-2 Addition and Subtraction of Matrices A.5 A.2-3 Associative Law of Matrix (Addition and Subtraction) A.6 A.2-4 Commutative Law of Matrix (Addition and Subtraction) A.6 A.2-5 Matrix Multiplication A.7 A.2-7 Multiplication b.7 A.2-8 Inverse of Matrix Multiplication A.7 A.2-9 Rank of a Matrix A.9 A.3-1 Computer Aided Solutions of Matrices A.9 A.3-2 Maltiplication b.7 A.2-9 Rank of a Matrix A.9 A.3-1 Difference Equations B-1 B.1 Difference Equations B-1 B.1 Difference Equations B-1 B.1 Difference Equations B-1 B.2 APPRENDING C Laplace Transform Table C-1 APPRENDING C Fransform | A-2 | Matrix Alge | ebra A-5 | s. 65.9% | - 200.00 868 676 876 F - 675 | 3 | |--|----------------|----------------------------------|---|----------|------------------------------|---------------------------------| | A-2-3 Associative Law of Matrix (Addition and Subtraction) A-6 A-2-4 Commutative Law of Matrix (Addition and Subtraction) A-6 A-2-5 Matrix Multiplication A-7 A-2-7 Multiplication by a Scalar A-8 A-2-8 Rank of a Matrix (Matrix Division) A-5 A-2-9 Rank of a Matrix (Matrix Division) A-5 A-2-9 Rank of a Matrix (Matrix Division) A-7 B-2-9 Rank of a Matrix (Matrix Division) A-7 B-2-9 Rank of a Matrix A-9 B-2-1 Difference Equations B-1 B-1 B-2 Difference Equations B-1 B-3 Symmetry of the Root Loci E-1 B-1 F-1 K ≪ Damak E ≪ Difference Equations B-1 B-2 Symmetry of the Root Loci E-2 B-3 Symmetry of the Root Loci E-2 B-3 Symmetry of the Root Loci E-2 B-4 Angles of Asymptotes of the Root Loci E-2 B-5 Intersect of the Asymptotes of the Root Loci E-1 B-9 I (Saddle Point) on the Root Loci E-1 B-9 I (Saddle Point) on the Root Loci E-16 B-4 Piper B-2 Difference Equations B-1 B-3 Symmetry of the Root Loci E-16 B-4 Angles of Asymptotes of the Root Loci E-16 B-5 Intersection of the Root Loci E-16 B-6 Stability of Discrete-Data Systems H-14 State Equations B-1-1 B-9 I (Saddle Point) on the Root Loci E-16 B-4 Systems B-5 B-5 Root Loci Discrete-Data Systems B-14 Systems B-6 B-4 Angles of Discrete-Data Systems B-14 Systems B-7 B-2 Systems With Minimum Phase Loop Transfer Functions F-4 B-4 | Λ-Δ | 1.7 | | | | | | A-2-3 Associative Law of Matrix (Addition and Subtraction) A-6 A-2-4 Commutative Law of Matrix (Addition and Subtraction) A-6 A-2-5 Matrix Multiplication A-7 A-2-7 Multiplication by a Scalar k A-8 A-2-9 Rank of a Matrix Multiplication A-7 A-2-1 Multiplication by a Scalar k A-8 A-2-9 Rank of a Matrix Multiplication A-7 A-2-1 Multiplication by a Scalar k A-8 A-2-9 Rank of a Matrix Multiplication A-7 A-2-1 Multiplication by a Scalar k A-8 A-2-9 Rank of a Matrix Multiplication A-7 A-2-1 Multiplication by a Scalar k A-8 A-2-9 Rank of a Matrix Multiplication A-7 A-2-1 Multiplication by a Scalar k A-8 A-2-9 Rank of a Matrix Multiplication A-7 A-2-1 Multiplication by a Scalar k A-8 A-2-9 Rank of a Matrix Multiplication A-7 A-2-1 Multiplication by a Scalar k A-8 A-2-9 Rank of a Matrix Multiplication A-7 A-2-1 Multiplication by a Scalar k A-8 A-2-9 Rank of a Matrix Multiplication A-7 A-2-1 Multiplication by a Scalar k A-8 A-2-9 Rank of a Matrix Multiplication A-7 A-2-1 Multiplication by a Scalar k A-8 A-2-9 Rank of a Matrix Multiplication A-7 A-2-1 Multiplication by a Scalar k A-8 A-2-9 Rank of a Matrix Multiplication A-7 A-2-1 Multiplication by a Scalar k A-8 A-2-1 Multiplication by a Scalar k A-8 A-2-1 Multiplication by a Scalar k A-8 A-2-2 Rank of a Matrix Multiplication A-7 A-2-1 Multiplication by a Scalar k A-8 A-2-2 Rank of a Matrix Multiplication A-7 A-2-1 Multiplication by a Scalar k A-8 A-2-2 Rank of a Matrix Multiplication A-7 A-2-1 Multiplication by a Scalar k A-8 Biscrete-Data Control Systems H-1 B-1 Laptocution H-1 B-2 Transform H-1 B-2 Transform H-1 B-2 Deficience Equations B-1 B-1 Laptocution H-1 B-2 Deficience Equations B-1 B-1 Laptocution H-1 B-2 Transform Multiplication by a Scalar k A-9 Biscrete-Data Control Systems H-1 B-2 Nome Important Theorems of the Scalar k A-9 Biscrete-Data Control Systems H-1 B-2 Scalar k A-2-2 Some Important Th | | | | | | | | A 2 3 | | | | | | | | Subtraction) A-6 A-2-4 Commutative Law of Matrix (Addition and Subtraction) A-6 A-2-5 Rules of Matrix Multiplication A-7 A-2-6 Rules of Matrix Multiplication A-7 A-2-7 Aubtriplication by a Scalar & A-8 A-2-8 Inverse of Matrix Multiplication A-7 A-2-8 Inverse of Matrix Multiplication A-7 A-2-8 Inverse of Matrix Multiplication A-7 A-2-9 Rank of a Matrix Austra Division) A-8 A-2-9 Rank of a Matrix Austra Division A-8 A-2-9 Rank of a Matrix Austra Division A-9 A-3 Computer-Aided Solutions of Matrices A-9 Difference Equations B-1 B-1 Difference Equations B-1 B-2 Number of Branches on the Root Loci E-1 E-1 K = 0 and K = ±∞ Points E-1 E-2 Number of Branches on the Root Loci E-2 E-3 Symmetry of the Root Loci E-2 E-4 Angles of Asymptotes (Centroid) E-5 E-5 Intersect of the Asymptotes (Centroid) E-5 E-6 Root Loci on the Real Axis E-8 E-7 Angles of Departure and Angles of Arrival of the Root Loci E-16 E-1 E-9-1 (Saddle Points) on the Root Loci E-16 E-9-2 The Angle of Arrival and Departure of Root Loci at the Breakway Points E-11 E-9-1 (Saddle Points) on the Root Loci E-16 E-10 Calculation of Noquist Criterion F-1 F-1-1 System with Minimum-Phase Loop Transfer Functions of Noquist Criterion F-1 F-1-2 System with Minimum-Phase Loop Transfer Functions of Noquist Criterion F-1 F-1-2 System with Minimum-Phase Loop Transfer Functions of Noquist Criterion F-1 F-1-2 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Interoper Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 H-2-5 Stability of Discrete-Data Systems H-26 H-3-5 Stability Tests of Discrete-Data Systems H-26 H-4-5 State Diagrams of Discrete-Data Systems H-26 H-5-2 Stability of Discrete-Data Systems H-26 H-5-2 Stability Tests of Discrete-Data Systems H-26 H-5-2 Stability of Discrete-Data Systems H-27 Stability of Discrete-Data Systems H-28 H-5-2 Stability of Discrete-Data Systems H-27 Stability of Di | | A-2-3 | | G-2 | | | | A-2-4 Commutative Law of Matrix (Addition and Subtraction) A-6 A-2-5 Matrix Multiplication A-6 A-2-6 Mules of Matrix Multiplication A-7 A-2-7 Multiplication by a Scalar k A-8 A-2-9 Rank of a Matrix (Matrix Division) A-5 A-2-9 Rank of a Matrix (Matrix Division) A-5 A-2-9 Rank of a Matrix (Matrix Division) A-5 Difference Equations B-1 B-1 Difference Equations B-1 B-2-FERENSIA C Laplace Transform Table C-1 B-3-FERENSIA C Laplace Transform Table D-1 APPERENSIA C-1 H-2-1 Cand K = ±∞ Points E-1 E-1 K = 0 and K = ±∞ Points E-1 E-1 K = 0 and K = ±∞ Points E-1 E-1 Number of Branches on the Root Loci E-2 E-2 Systems of Asymptotes of the Root Loci and Behavior of the Root Loci at lyl = ∞ E-4 E-5 Intersect of the Asymptotes (Centrod) E-5 E-6 Root Loci at lyl = ∞ E-4 E-7 Transform Table D-1 APPERENSIA E Laplace Transform Table D-1 APPERENSIA C Laplace Transform Table D-1 APPERENSIA C Laplace Transform Table D-1 APPERENSIA C Laplace Transform Table C-1 H-2-2 Transform H-1 H-2-1 Introduction H-1 H-2-1 Definition of the z-Transform H-1 H-2-2 Relationship between the Laplace Transform H-2 R-1-2 Relationship between the Laplace Transform H-2 R-1-2 Relationship between the Laplace Transform H-3 H-2-3 Some inportant Theorens of the Pl-2-3 Systems H-3 H-2-4 H-2-5 Computer Solution of the Transform H-2 H-2-5 Computer Solution of the Partial- Fra | | | | | | | | A 2-5 Matrix Multiplication A-6 A 2-6 Rules of Matrix Multiplication A-7 A 2-7 Multiplication by a Scalar & A-8 A 2-8 Inverse of a Matrix (Matrix Division) A-8 A 2-9 Rank of a Matrix (Matrix Division) A-8 A 2-9 Rank of a Matrix (Matrix Division) A-8 A 2-9 Rank of a Matrix (Matrix Division) A-8 A 2-10 Rank of a Matrix (Matrix Division) A-8 A 2-10 Rank of a Matrix (Matrix Division) A-8 B 2-10 Difference Equations B-1 B-1 Difference Equations B-1 B-1 Difference Equations B-1 B-1 Difference Equations B-1 B-1 Difference
Equations B-1 B-2 Difference Equations B-1 B-3 Difference Equations B-1 B-4 Difference Equations B-1 B-4 Appleable E B-4 Appleable E B-4 Appleable E B-5 Intersection of the Root Loci E-1 B-1 Number of Branches on the Root Loci E-2 B-3 Symmetry of the Root Loci E-2 B-4 Angles of Appmytotes (Centrod) E-5 B-6 Root Loci of the Root Loci and Behavior of the Root Loci and Behavior of the Root Loci and Behavior of the Root Loci E-9 B-6 Root Loci E-9 B-7 Rank of a Matrix Multiplication A-7 B-2-8 Intersection of the Root Loci and Behavior of the Root Loci and Behavior of the Root Loci and Behavior of the Root Loci E-11 B-9-1 (Saddle Points) on the Root Loci E-11 B-9-2 The Angle of Arrival and Departure of Root Loci E-16 B-8 PPENDENCE F B-1 Intersection of the Root Loci E-16 B-2 Transform H-3 B-2 Transform H-5 B-2 Transform H-5 B-2 Transform H-5 B-2 Transform H-5 B-2 Transform H-1 B-2 Transform H-1 B-2 Transform H-1 B-2 Transform H-1 B-2 Transform H-2 B-2 Transform H-2 B-2 Transform H-3 B-2 Transform H-5 B-2 Transform H-5 B-2 Transform H-5 B-2 Transform H-5 B-2 Transform H-1 H-2 B-2 Transform H-1 B-2 Transform H-2 B-2 Transform H-2 B-2 Transform H-1 B-2 Transform H-1 B-2 Transform H-1 B-2 Transform H-1 B-2 Transform H-2 B-2 Transform H-1 B-2 Transf | | A-2-4 | | | | | | A-2-5 Rules of Matrix Multiplication A-7 A-2-7 Multiplication by a Scalar & A-8 A-2-9 Rank of a Matrix (Antix Division) A-8 A-3-9 Rank of a Matrix (Antix Division) A-8 Difference Equations B-1 B-1 Difference Equations B-1 B-1 Difference Equations B-1 B-1 Difference Equations B-1 B-1 Difference Equations B-1 B-2 PREPAIRE C Laplace Transform Table C-1 B-3 PREPAIRE C Laplace Transform Table C-1 B-4 PPERAIRE C Laplace Transform Table C-1 B-4 PPERAIRE C Laplace Transform Table C-1 B-4 PPERAIRE C Laplace Transform Table C-1 B-5 Properties and Construction of the Root Loci E-1 E-1 Number of Branches on the Root Loci E-2 E-3 Symmetry of the Root Loci E-2 E-4 Angles of Asymptotes of the Root Loci and Behavior of the Root Loci at the Breakow of the Root Loci is B-1 E-9 Intersect of the Asymptotes (Centroid) E-5 E-6 Root Loci on the Real Axis E-8 E-7 Angles of Departure and Angles of Arrival of the Root Loci at the Breakow Foints E-11 E-9-1 (Saddle Points) on the Root Loci E-16 B-4 PPERAIRE F General Nyquist Criterion F-1 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-1-2 Systems with Minimum-Phase Loop Transfer Functions F-4 F-1-1 System with Minimum-Phase Loop Minimum and Nonminimum Transfer Functions F-4 F-1 Illustrative Examples—General Nyquist Criterion F-4 F-1 Illustrative Examples—General Nyquist Criterion F-4 F-1 Illustrative Examples—General Nyquist Criterion F-4 F-2 Illustrative Examples—General Nyquist Criterion F-4 F-1 Illustrative Examples—General Nyquist Criterion F-4 F-1 Illustrative Examples—General Nyquist Criterion F-4 F-1 Illustrative Examples—General Nyquist Criterion F-4 F-2 Illustrative Examples—General Nyquist Criterion F-4 F-1 Illustrative Examples—General Nyquist Criterion F-4 F-2 Illustrative Examples—General Nyquist Criterion F-4 F-2 Illustrative Examples—General Nyquist Criterion F-1 F-1 Illustrative Examples—General Nyquist Criterion F-1 F-1 Illustrative Examples—General Nyquist Criterion F-1 F-1 Illustrative Examples—Gene | | | | | | | | A 2-6 Rules of Matrix Multiplication A 7 A-2-8 Iranese of a Matrix (Matrix Division) A-2-9 Rank of a Matrix (A-9 A-3 Computer-Aided Solutions of Matrices A-9 Bifference Equations B-1 B-1 Difference B-2 Difference Equations B-1 B-3 Difference Equations B-1 B-4 Difference Equations B-1 B-4 Difference Equations B-1 B-5 Difference Equations B-1 B-6 Difference Equations B-1 B-7 Difference Equations B-1 B-8 Difference Equations B-1 B-9 Difference Equations B-1 B-1 B-2 Difference Equations B-1 B-3 Difference Equations B-1 B-4 Difference Equations B-1 B-1 Difference Equations B-1 B-2 Difference Equations B-1 B-3 Difference Equations B-1 B-4 Difference Equations B-1 B-1 Difference Equations B-1 B-1 Difference Equations B-1 B-2 Difference Equations B-1 B-1 Difference Equations B-1 B-1 Difference Equations B-1 B-2 Difference Equation B-1 B-1 Difference Equations B-1 B-1 Difference Equation B- | | A-2-5 | Matrix Multiplication A-6 | G 0 | | | | A-2-7 Multiplication by a Scalar & A-5 A-2-8 Inverse of a Matrix (Matrix Division) A-2-9 Rank of a Matrix (Astrix Division) A-3 Computer-Aided Solutions of Matrices A-9 Difference Equations B-1 B-1 Difference Equations B-1 B-1 Difference Equations B-1 B-1 Difference Equations B-1 B-1 Difference Equations B-1 B-2 Relationship between the Laplace Transform and the z-Transform H-2 Some Important Theorems of the z-Transform H-3 Relationship between the Laplace Transform and the z-Transform H-2 Some Important Theorems of the z-Transform Table D-1 B-2 FIGURE TO TRANSITION TO TRANSFORM B-2 Transform Table D-1 B-3 FIGURE TO TRANSFORM B-2 Transform Table D-1 B-4 FIGURE TO TRANSFORM B-2 Transform Table D-1 B-5 FIGURE TO TRANSFORM B-1 B-2 Transform Table D-1 B-3 FIGURE TO TRANSFORM B-2 Transform Table D-1 B-4 FIGURE TO TRANSFORM B-2 Transform Table D-1 B-4 FIGURE TO TRANSFORM B-2 Transform Table D-1 B-4 FIGURE TO TRANSFORM B-2 Transform Table D-1 B-5 FIGURE TO TRANSFORM B-2 Transform Table D-1 B-6 FIGURE TO TRANSFORM B-1 B-2 Transform Table D-1 B-2 FIGURE TO TRANSFORM B-2 Transform B-1 B-2 Transform Table Tran | | A-2-6 | | G-3 | Final Com | ments G-4 | | A-3 Computer-Aided Solutions of Matrices A-9 A-3 Computer-Aided Solutions of Matrices A-9 February Febr | | A-2-7 | Multiplication by a Scalar k A-8 | b 4.0 | THE NEW 2007 | | | A-2-9 Rank of a Matrix A-9 A-3 Computer-Aided Solutions of Matrices A-9 H-1 H-2 The x-Transform H-1 H-2 The x-Transform H-1 H-2 The x-Transform H-1 H-2 The x-Transform H-1 H-2 Transform and the x-Transform H-2 H-2 Transform Table C-1 H-2 APPRENDIXE C Laplace Transform Table C-1 H-2 APPRENDIXE D H-2 Transform Table C-1 H-2 APPRENDIXE D H-2 Transform H-3 APPRENDIXE D H-2 Transform H-3 APPRENDIXE D H-2 Transform H-3 APPRENDIXE D H-2 Transform H-5 APPRENDIXE D H-2 Transform H-3 APPRENDIXE D H-2 Transform H-5 H-7 T | | A-2-8 | Inverse of a Matrix (Matrix Division) A-8 | Discre | ete-Data Co | ntrol Systems H-1 | | H-2 The x-Transform H-1 | | A-2-9 | Rank of a Matrix A-9 | | | | | Definition of the z-Transform H-1 | A-3 | Computer- | Aided Solutions of Matrices A-9 | | | | | B-1 Difference Equations B-1 B-1 Difference Equations B-1 B-1 Difference Equations B-1 B-2 Difference Equations B-1 B-3 Difference Equations B-1 B-4 Difference Equations B-1 B-2 Caplace Transform Table C-1 B-2 Caplace Transform Table C-1 B-2 Caplace Transform Table C-1 B-3 Seme Important Theorems of the Caplace Transform H-5 B-2 Transform Table D-1 B-3 Difference Equations B-1 B-4 DFENDANCE B-2 Number of Branches on the Root Loci E-1 B-2 Number of Branches on the Root Loci E-2 B-3 Symmetry of the Root Loci at s = ∞ E-4 B-4 Angles of Asymptotes (Centroid) E-5 B-5 Intersect of the Asymptotes (Centroid) E-5 B-6 Root Loci on the Real Axis E-8 B-7 Angles of Departure and Angles of Arrival of the Imaginary Axis E-11 B-9-1 (Saddle Points) on the Root Loci E-11 B-9-1 (Saddle Points) on the Root Loci E-16 B-4 DFENDANCE B-6 Root Loci at the Breakaway Point E-12 B-10 Calculation of K on the Root Loci E-16 B-10 Calculation of K on the Root Loci E-16 B-10 Calculation of K on the Root Loci E-16 B-11 Systems with Minimum-Phase Loop Transfer Function of Nyquist Criterion F-1 B-1-1 System with Minimum-Phase Loop Transfer Functions F-4 B-1-1 Systems with Improper Loop Transfer Functions F-4 B-1-2 Systems with Improper Loop Transfer Functions F-4 B-1-3 Systems with Improper Loop Transfer Functions F-4 B-1-4 State Diagrams of Discrete-Data Systems H-26 B-10 Caplation of Nyquist Criterion F-1 B-1-1 System with Minimum-Phase Loop Transfer Functions F-4 B-1-2 Systems with Improper Loop Transfer Functions F-4 B-1-3 Systems with Improper Loop Transfer Functions F-4 B-1-4 State Diagrams of Discrete-Data Systems H-26 B-10 Caplation B-1 Ca | . 9.99 | meanannon name | 2 | П-2 | | _ | | Properties and Construction of the Root Loci E-1 H-3 H-3 Systems with Cascade Elements H-12 H-3 Systems with Cascade Elements H-12 H-3 Systems H-14 Systems H-16 H-3 H-26 H-4 State Diagrams for Sampled-Data H-5 H-27 H-5 State Diagrams for Sampled-Data Systems H-27 | | | | | | | | H-2-3 Some Important Theorems of the z-Transform H-5 | Dillett | | | | 11-2-2 | | | Laplace Transform Table C-1 | B-1 | Difference | Equations B-1 | | H-2-3 | | | H-2-4 Inverse z-Transform H-5 Computer Solution of the Partial- Fraction Expansion of K(z)/z H-7 z-Transform Table D-1 → APPERISE ▼ Properties and Construction of the Root Loci E-1 E-1 K = 0 and K = ±∞ Points E-1 E-2 Number of Branches on the Root Loci E-2 E-3 Symmetry of the Root Loci E-2 E-4 Angles of Asymptotes of the Root Loci at = ∞ E-4 E-5 Intersect of the Asymptotes (Centroid) E-5 E-6 Root Loci on the Real Axis E-8 E-7 Angles of Departure and Angles of Arrival of the Root Loci is 1 E-9 Breakaway Points E-11 E-9-1 (Saddle Points) on the Root Loci E-16 F-9-1 The Angle of Arrival and Departure of Root Loci at the Breakaway Point E-12 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Function F-4 F-2 Illustrative Examples—General Nyquist Criterion Illustr | . 22.23 | . X = 27 · 80 X S = 0 · 60 × · 6 | œ. | | 11-2 0 | | | ## APPENDIX © z-Transform Table D-1 **Properties and Construction of the Root Loci E-1 E-1 K = 0 and K = ±∞ Points E-1 E-2 Number of Branches on the Root Loci E-2 E-3 Symmetry of the Root Loci E-2 E-4 Angles of Asymptotes of the Root Loci and Behavior of the Root Loci at s = ∞ E-4 E-5 Intersect of the Asymptotes (Centroid) E-5 E-6 Root Loci on the Root Loci with the Root Loci E-9 E-8 Intersection of the Root Loci with the Imaginary Axis E-11 E-9-1 (Saddle Points) on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 F-1-1 System with Minimum-Phase Loop
Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion F-1 F-1-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion F-1 F-1-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion F-1 F-1-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion F-1 F-1-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion F-1 F-1-2 Illustrative Examples—General Nyquist Criterion F-1 F-1-3 Intersect Obsceret—Data Systems H-26 H-2-5 Computer Solution of Ye 2 Transfer Function of Yeoliscrete Equations of Discrete-Data Systems H-18 H-3-1 Transfer Functions of Discrete-Data Systems H-8 H-3-2 Transfer Functions of Discrete-Data Systems H-18 H-3-1 Transfer Functions of Discrete-Data Systems H-19 H-3-2 Transfer Function of Yeoliscrete State Equations of Linear Difference Equations of Discrete-Data Systems H-18 H-3-1 Transfer Functions of Discrete-Data Systems H-19 H-4-3 Transfer Function of Yeoliscre | | | | | H-2-4 | | | Fraction Expansion of Y(z)/z H-7 Fraction Expansion of Y(z)/z H-7 Application of the 2-Transform to the Solution of Linear Difference Equations H-7 Froperties and Construction of the Root Loci E-1 E-1 | Lapia | se mansion | III Labia C-I | | | | | z-Transform Table D-1 > APPERISON E Properties and Construction of the Root Loci E-1 E-1 K = 0 and K = ±∞ Points E-1 E-2 Number of Branches on the Root Loci E-2 E-3 Symmetry of the Root Loci E-2 E-4 Angles of Asymptotes of the Root Loci and Behavior of the Root Loci at s = ∞ E-4 E-5 Intersect of the Asymptotes (Centroid) E-5 E-6 Root Loci E-9 E-8 Intersection of the Root Loci with the Imaginary Axis E-11 E-9 Breakaway Points E-11 E-9-1 (Saddle Points) on the Root Loci E-11 E-9-2 The Angle of Arrival and Departure of Root Loci at the Breakaway Point E-12 E-10 Calculation of K on the Root Loci E-16 F-1 Systems with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Transfer Functions of Discrete-Data Systems H-26 H-3-3 Transfer Functions of Closed-Loop Discrete-Data Systems H-26 H-3-3 Transfer Functions of Linear Discrete-Data Systems H-16 H-3-3 Transfer Functions of Linear Discrete-Data Systems H-16 H-3-2 Transfer Function of Linear Discrete State Equations H-16 H-4-4 Transfer-Function Matrix and the Characteristic Equation H-20 H-4-5 Stability of Discrete-Data Systems H-26 H-5-1 BIBO Stability H-26 H-5-2 Zero-Input Stability H-26 H-5-1 BIBO Stability H-26 H-5-1 Stability Tests of Discrete-Data Systems H-27 | 6 A.F | PENDIK | € 3 | | | | | Froperties and Construction of the Root Loci E-1 E-1 K = 0 and K = ±∞ Points E-1 E-2 Number of Branches on the Root Loci E-2 E-3 Symmetry of the Root Loci E-2 E-4 Angles of Asymptotes of the Root Loci and Behavior of the Root Loci at s = ∞ E-4 E-5 Intersect of the Asymptotes (Centroid) E-5 E-6 Root Loci et B-9 E-7 Angles of Departure and Angles of Arrival of the Root Loci in E-9 E-8 Intersection of the Root Loci with the Imaginary Axis E-11 E-9 Breakaway Points E-11 E-9-2 The Angle of Arrival and Departure of Root Loci at the Breakaway Point E-12 E-10 Calculation of K on the Root Loci E-16 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-1-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-1-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum And Nomminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion F-1 F-3 Stability Tests of Discrete-Data Systems H-27 F-3 Stability Fo | <i>z</i> -Trar | nsform Tabl | e D-1 | | H-2-6 | | | From ties and Construction of the Root Loci E-1 E-1 K = 0 and K = ±∞ Points E-1 E-2 Number of Branches on the Root Loci E-2 E-3 Symmetry of the Root Loci E-2 E-4 Angles of Asymptotes of the Root Loci and Behavior of the Root Loci at s = ∞ E-4 E-5 Intersect of the Asymptotes (Centroid) E-5 E-6 Root Loci on the Real Axis E-8 E-7 Angles of Departure and Angles of Arrival of the Root Loci in E-9 E-8 Intersection of the Root Loci with the Imaginary Axis E-11 E-9 Breakaway Points E-11 E-9-2 The Angle of Arrival and Departure of Root Loci at the Breakaway Point E-12 E-10 Calculation of K on the Root Loci E-16 F-1-1 System with Minimum-Phase Loop Transfer Functions of Discrete-Data Systems H-12 H-3-2 Systems with Cascade Elements H-12 H-3-2 Transfer Functions of Closed-Loop Discrete-Data Systems H-14 H-3-3 Transfer Functions of Closed-Loop Discrete-Data Systems H-16 H-4-1 Discrete State Equations H-16 H-4-2 Solutions of the Discrete State Equations: Discrete State Equations: H-19 H-4-3 z-Transforr Solution of Hopicines H-18 H-4-1 Discrete State Equations H-18 H-4-2 Solutions of Discrete-Data Systems H-12 H-4-3 z-Transfer Function of Discrete State Equations: H-16 H-4-1 Discrete State Equations H-16 H-4-2 Solutions of the Discrete State Equations: Discrete State Equations: H-19 Transfer Functions of Discrete-Data Systems H-26 H-4-5 State Diagrams of Discrete-Data Systems H-26 H-4-5 State Diagrams for Sampled-Data Systems H-26 H-4-6 State Diagrams for Sampled-Data Systems H-26 H-5-1 BIBO Stability H-26 H-5-3 Stability Tests of Discrete-Data Systems H-27 Transfer Functions of Discrete-Data Systems H-27 Transfer Functions of Discrete-Data Systems H-12 H-3-2 Transfer Functions of Closed-Loop Discrete-Data Systems H-16 H-4-1 Discrete State Equations H-16 H-4-1 Discrete State Equations H-16 H-4-1 Transfer Function of the Root Loci and H-4-1 Discrete State Equations H-16 H-4-1 Discrete State Equations H-16 H-4-2 Solutions of the Root Loci and H-16 H-4-3 Zequations H-16 H-4-5 State | | | | | | | | E-1 K = 0 and K = ±∞ Points E-1 E-2 Number of Branches on the Root Loci E-2 E-3 Symmetry of the Root Loci E-2 E-4 Angles of Asymptotes of the Root Loci and Behavior of the Root Loci at s = ∞ E-4 Intersect of the Asymptotes (Centroid) E-5 E-6 Root Loci on the Real Axis E-8 E-7 Angles of Departure and Angles of Arrival of the Root Loci with the Imaginary Axis E-11 E-9 Breakaway Points E-11 E-9-1 (Saddle Points) on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of Nyquist Criterion F-1 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions of Discrete-Data Systems H-18 E-10 Calculation of Nyquist Criterion F-1 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-1-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum And Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion F-1 F-1 Formulation of Nyquist Criterion F-1 F-2 Illustrative Examples—General Nyquist Criterion F-1 F-2 Illustrative Examples—Function F-1 F-3 Illustrative Examples—Function F-1 F-4 Illustrative Examples—Function F-2 F- | | | | | | Equations H-7 | | E-2 Number of Branches on the Root Loci E-2 E-3 Symmetry of the Root Loci E-2 E-4 Angles of Asymptotes of the Root Loci and Behavior of the Root Loci at s = \infty E-4 Intersect of the Asymptotes (Centroid) E-5 E-6 Root Loci on the Real Axis E-8 E-7 Angles of Departure and Angles of Arrival of the Root Loci with the Imaginary Axis E-11 E-9 Intersection of the
Root Loci with the Imaginary Axis E-11 E-9 Breakaway Points E-11 E-9-1 (Saddle Points) on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 F-1 Formulation of Nyquist Criterion F-1 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 Ind H-3-2 Transfer Function of the Zero-Order-Hold H-13 H-3-3 Transfer Function of Closed-Loop Discrete-Data Systems H-14 State Equations of Linear Discrete-Data Systems H-14 State Equations of the Discrete State Equations H-16 H-4-1 Discrete State Equations H-16 H-4-2 Solutions of the Discrete State Equations H-18 Transfer Function of the Zero-Order-Hold H-13 H-3-3 Transfer Functions of Closed-Loop Discrete-Data Systems H-14 State Equations of Linear Discrete-State Equations H-16 H-4-1 Discrete State Equations H-16 H-4-2 Solutions of the Discrete State Equations H-18 H-4-3 Z-Transform Solution of Discrete State Equations H-18 H-4-3 Transfer Function Matrix and the Characteristic Equation H-20 H-4-3 State Diagrams of Discrete-Data Systems H-26 H-4-5 State Diagrams for Sampled-Data Systems H-26 H-5-1 BIBO Stability H-26 H-5-1 BIBO Stability H-26 H-5-1 BIBO Stability H-26 H-5-1 Repair Functions F-4 H-5-1 Repair Functions of Linear Discrete-Data Systems H-14 H-4-2 Solutions of the Discrete State Equations H-16 H-4-1 Discrete State Equations H-16 H-4-1 Transfer Function of Matrix and the Characteristic Equation H-18 H-4-3 State Diagrams of Discrete-Data Systems H-28 H-4-5 State Diagrams for Sampled-Data Systems H-26 H- | Prope | rties and C | onstruction of the Root Loci E-1 | H-3 | Transfer F | unctions of Discrete-Data | | E-3 Symmetry of the Root Loci E-2 E-4 Angles of Asymptotes of the Root Loci and Behavior of the Root Loci at s = ∞ E-4 E-5 Intersect of the Asymptotes (Centroid) E-5 E-6 Root Loci on the Real Axis E-8 E-7 Angles of Departure and Angles of Arrival of the Root Loci E-9 E-8 Intersection of the Root Loci with the Imaginary Axīs E-11 E-9 Breakaway Points E-11 E-9-1 (Saddle Points) on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of Nyquist Criterion F-1 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 E-4 Angles of Asymptotes of the Root Loci at s = ∞ E-4 H-3-2 Transfer Functions of Closed-Loop Discrete-Data Systems H-14 H-3-3 Transfer Functions of Closed-Loop Discrete-Data Systems H-14 State Equations of Linear Discrete-Data Systems H-16 H-4-1 Discrete State Equations of the Discrete State Equations: Discrete State-Transition Equations H-18 H-4-2 Solutions of the Discrete State Equations H-16 H-4-1 Discrete State Equations of the Discrete State Equations: Discrete State Equations H-16 H-4-1 Discrete State Equations of the Discrete State Equations: Discrete State Equations H-16 H-4-1 Discrete State Equations of the Discrete State Equations: Discrete State Equations H-16 H-4-1 Discrete State Equations of the Discrete State Equations of the Discrete State Equations: Discrete State Equations H-16 H-4-1 Discrete State Equations of the Discrete State Equations: Discrete State Equations of the Discrete State Equations: Discrete State Equations H-16 H-4-1 Discrete State Equations of the Discrete State Equations: Discrete State Equations of the Discrete State Equations of | E-1 | K=0 and | $K = \pm \infty$ Points E-1 | | Systems 1 | H-8 | | E-4 Angles of Asymptotes of the Root Loci and Behavior of the Root Loci at s = ∞ E-4 E-5 Intersect of the Asymptotes (Centroid) E-5 E-6 Root Loci on the Real Axis E-8 E-7 Angles of Departure and Angles of Arrival of the Root Loci E-9 E-8 Intersection of the Root Loci with the Imaginary Axis E-11 E-9 Breakaway Points E-11 E-9-1 (Saddle Points) on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 F-1 Formulation of Nyquist Criterion F-1 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-1 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion F-1 F-3 Illustrative Examples—General Nyquist Criterion F-4 F-4 In H-4-1 F-4 In F-3 State Equations of Linear Discrete-Data Systems H-16 H-4-1 Discrete State Equations Obscrete State Equations of Linear Discrete State Equations of Linear Discrete-Data Systems H-16 H-4-1 Discrete State Function of Linear Discrete State Equations of Linear Discrete State Equations of Linear Discrete State Equations | E-2 | Number o | f Branches on the Root Loci E-2 | | H-3-1 | | | Behavior of the Root Loci at s = \infty E-4 E-5 Intersect of the Asymptotes (Centroid) E-5 E-6 Root Loci on the Real Axis E-8 E-7 Angles of Departure and Angles of Arrival of the Root Loci E-9 E-8 Intersection of the Root Loci with the Imaginary Axis E-11 E-9 Breakaway Points E-11 E-9-1 (Saddle Points) on the Root Loci E-11 E-9-2 The Angle of Arrival and Departure of Root Loci at the Breakaway Point E-12 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of Nyquist Criterion F-1 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-1-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 E-5 Intersect of the Asymptotes (Centroid) E-5 H-3-3 Transfer Functions of Closed-Loop Discrete-Data Systems H-14 State Equations of Linear Discrete-Data Systems H-16 H-4-1 Discrete State Equations H-16 H-4-2 Solutions of the Discrete State E-quations: Discrete State E-quations: Discrete State E-quations H-18 F-4-3 Transfer Functions of Closed-Loop Discrete-Data Systems H-16 H-4-1 Discrete State Equations: Discrete State E-quations: Discrete State E-quations: Discrete State E-quations: Discrete State F-4-4-3 z-Transform Solution of Discrete State E-quations: | E -3 | Symmetry | of the Root Loci E-2 | | | | | E-5 Intersect of the Asymptotes (Centroid) E-5 E-6 Root Loci on the Real Axis E-8 E-7 Angles of Departure and Angles of Arrival of the Root Loci E-9 E-8 Intersection of the Root Loci with the Imaginary Axis E-11 E-9 Breakaway Points E-11 E-9-1 (Saddle Points) on the Root Loci E-11 E-9-2 The Angle of Arrival and Departure of Root Loci at the Breakaway Point E-12 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 E-10 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 E-6 Root Loci on the Real Axis E-8 H-3-3 Transfer Functions of Closed-Loop Discrete-Data Systems H-14 State Equations of Linear Discrete-Data Systems H-16 H-4-1 Discrete State Equations of the Discrete State Equations of the Discrete State Equations: Discrete State Equations: Discrete State Equations H-18 E-7 Transform Solution of Discrete State Equations H-18 E-7 Transform Solution of Discrete State Equations H-18 E-7 Transform Solution of Discrete State Equations H-18 E-4-2 Solutions of the Poiscrete State Equations H-16 H-4-1 Discrete State Equations of Linear Discrete-Data Systems H-24 State Equations of Linear Discrete-Data Systems H-14 H-4-2 Solutions of the Discrete State Equations of Linear Discrete State Equations of Linear Discrete-Data Systems H-14 H-4-1 Discrete State Equations of Linear Discrete State Equations of Linear Discrete-Data Systems H-26 H-4-1 Discrete State Equations of Linear Discrete State Equations of Linear Discrete State Equations of Linear Discrete-Data Systems H-16 H-4-1 Discrete State Equations of Linear Discrete State Equations of the Discrete State Equations of Linear Discrete State Equations H-16 H-4-3 Z-17-10 State Discrete State Equations of Linear Discrete State Equations H-16 H-4-3 Z-17-10 State Discrete State | E-4 | Angles of A | Asymptotes of the Root Loci and | | H-3-2 | | | E-6 Root Loci on the Real Axis E-8 E-7 Angles of Departure and Angles of Arrival of the Root Loci E-9 E-8 Intersection of the Root Loci with the Imaginary Axis E-11 E-9 Breakaway Points E-11 E-9-1 (Saddle Points) on the Root Loci E-11 E-9-2 The Angle of Arrival and Departure of Root Loci at the Breakaway Point E-12 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of Nyquist Criterion F-1 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-1 Root Loci of the Root Loci with the State Equations of Linear Discrete-Data Systems H-16 H-4-1 Discrete State Equations H-16 H-4-2 Solutions of the Discrete State Equations: Discrete State Equations H-18 H-4-3 z-Transform Solution of
Discrete State Equations H-18 H-4-3 z-Transform Solution of Discrete State Equations H-18 H-4-3 State Equations of Linear Discrete State Equations H-16 H-4-1 Discrete State Equations: | | Behavior o | of the Root Loci at $ s = \infty$ E-4 | | | | | E-7 Angles of Departure and Angles of Arrival of the Root Loci E-9 E-8 Intersection of the Root Loci with the Imaginary Axis E-11 E-9 Breakaway Points E-11 E-9-1 (Saddle Points) on the Root Loci E-11 E-9-2 The Angle of Arrival and Departure of Root Loci at the Breakaway Point E-12 E-10 Calculation of K on the Root Loci E-16 F-10 Formulation of Nyquist Criterion F-1 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum Angles Interval Equations H-16 H-4-1 Discrete State Equations H-16 H-4-2 Solutions of Lincar Discrete State Equations H-16 H-4-3 Z-Transform Solution of Lincar Discrete State Equations H-16 H-4-3 Z-Transform Solution of Lincar Discrete State Equations H-16 H-4-3 Z-Transform Solution of Lincar Discre | | | | | H-3-3 | | | Root Loci E-9 E-8 Intersection of the Root Loci with the Imaginary Axis E-11 E-9 Breakaway Points E-11 E-9-1 (Saddle Points) on the Root Loci E-11 E-9-2 The Angle of Arrival and Departure of Root Loci at the Breakaway Point E-12 E-10 Calculation of K on the Root Loci E-16 F-1 Formulation of Nyquist Criterion F-1 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum Angle Park Interval Examples Angle Park Interval Equations H-16 H-4-1 Discrete State Equations H-16 H-4-2 Solutions of the Discrete State F-4-3 Z-Transform Solution of Discrete State F-4-4-3 Z-Transform Solution of Discrete State F-4-4-4 Transfer-Function Matrix and the Characteristic Equations H-19 H-4-3 State Diagrams of Discrete-Data Systems H-26 F-4-5 Stability of Discrete-Data Systems H-26 H-4-5 State Diagrams for Sampled-Data Systems H-26 F-1 BIBO Stability H-26 H-4-5 Stability of Discrete-Data Systems H-26 H-5-1 BIBO Stability H-26 F-1 Formulation of Nyquist Criterion F-1 F-2 Illustrative Examples—General Nyquist Criterion F-1 | | | | TT 4 | 01.1. 77 | | | E-8 Intersection of the Root Loci with the Imaginary Axis E-11 E-9 Breakaway Points E-11 E-9-1 (Saddle Points) on the Root Loci E-11 E-9-2 The Angle of Arrival and Departure of Root Loci at the Breakaway Point E-12 E-10 Calculation of K on the Root Loci E-16 F-10 Calculation of K on the Root Loci E-16 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum And Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum And Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Systems H-27 F-3 Illustrative Examples—General Nyquist Criterion F-4 F-4-4 Transfer State Equations H-16 H-4-2 Solutions of the Discrete State Equations: Discrete State F-4 Illustration Illu | E-7 | | | 11-4 | | | | Imaginary Axís E-11 E-9 Breakaway Points E-11 E-9-1 (Saddle Points) on the Root Loci E-11 E-9-2 The Angle of Arrival and Departure of Root Loci at the Breakaway Point E-12 E-10 Calculation of K on the Root Loci E-16 F-10 Formulation of Nyquist Criterion F-1 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer F-1-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 Minimum and Nonminimum Transfer Functions F-4 M-4-2 Solutions of the Discrete State Equations: Discrete State H-4-3 z-Transform Solution of Discrete State Equations: H-18 H-4-3 z-Transform Solution of Discrete State Equations: Discrete State H-4-3 z-Transform Solution of Discrete State Equations: Discrete State H-4-3 z-Transform Solution of Discrete State Equations: Discrete State H-4-3 z-Transform Solution of Discrete State Equations: Discrete State H-4-3 z-Transform Solution of Discrete State Equations: Discrete State H-4-3 z-Transform Solution of Discrete State H-4-3 z-Transform Solution of Discrete State Equations: Discrete State H-4-3 z-Transform Solution of Discrete State Equations: Discrete State H-4-3 z-Transform Solution of Discrete State Equations: Discrete State H-4-3 z-Transform Solution of Discrete State Equations: Discrete State H-4-3 z-Transform Solution of Discrete State Equations: Discrete State H-4-3 z-Transform Solution of Discrete State Equations: Discrete State H-4-3 z-Transform Solution of Discrete State Equations: Discrete State H-4-3 z-Transform Solution of Discrete State Equations: Equat | ~ . | | | | | | | E-9 Breakaway Points E-11 E-9-1 (Saddle Points) on the Root Loci E-11 E-9-2 The Angle of Arrival and Departure of Root Loci at the Breakaway Point E-12 E-10 Calculation of K on the Root Loci E-16 F-10 Calculation of K on the Root Loci E-16 General Nyquist Criterion F-1 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 Equations: Discrete State—Transition Equations H-18 F-4-3 z-Transform Solution of Discrete State Equations: Discrete State—Transition Equations H-18 F-4-3 z-Transform Solution of Discrete State Equations: H-18 F-4-3 z-Transform Solution of Discrete State Equations: H-18 F-4-3 z-Transform Solution of Discrete State Equations: H-19 H-4-3 z-Transform Solution of Discrete State Equations: H-18 F-4-3 z-Transform Solution of Discrete State Equations: H-19 H-4-3 z-Transform Solution of Discrete State Equations: H-18 F-4-3 z-Transform Solution of Discrete State Equations: H-19 H-4-4 Transfer-Function Matrix and the Characteristic Equation H-20 H-4-5 State Diagrams of Discrete-Data Systems H-22 H-4-5 State Diagrams of Discrete-Data Systems H-23 Stability of Discrete-Data Systems H-26 H-5-1 BIBO Stability H-26 H-5-2 Zero-Input Stability H-26 II-5-3 Stability Tests of Discrete-Data Systems H-27 | E-8 | | | | | | | E-9-1 (Saddle Points) on the Root Loci E-11 E-9-2 The Angle of Arrival and Departure of Root Loci at the Breakaway Point E-12 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 H-4-3 z-Transform Solution of Discrete State Equations H-19 H-4-4 Transfer-Function Matrix and the Characteristic Equation H-20 H-4-5 State Diagrams of Discrete-Data Systems H-22 H-4-6 State Diagrams for Sampled-Data Systems H-23 Systems H-23 H-5-1 BIBO Stability H-26 H-5-1 BIBO Stability H-26 H-5-2 Zero-Input Stability H-26 H-5-2 Zero-Input Stability H-26 H-5-3 Stability Tests of Discrete-Data Systems
H-27 II-5-3 Stability Tests of Discrete-Data Systems H-27 II-5-3 Stability Tests of Discrete-Data Systems H-26 II-5-3 Stability Tests of Discrete-Data Systems H-27 II-5-3 Stability Tests of Discrete-Data Systems H-26 | 77.0 | | | | 11 -4- 2 | | | E-9-2 The Angle of Arrival and Departure of Root Loci at the Breakaway Point E-12 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 H-4-4 Transfer-Function Matrix and the Characteristic Equation H-20 H-4-5 State Diagrams of Discrete-Data Systems H-22 H-4-6 State Diagrams for Sampled-Data Systems H-23 H-4-6 State Diagrams for Sampled-Data Systems H-23 H-5-1 Systems with Improper Loop Transfer Functions F-4 H-5-1 BIBO Stability H-26 H-5-2 Zero-Input Stability H-26 H-5-3 Stability Tests of Discrete-Data Systems H-27 H-5-1 Systems H-27 H-5-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 H-5-1 F-5-2 Transform Solution of Discrete State Equations H-19 H-4-3 Z-Transform Solution of Discrete State Equations H-19 H-4-3 Transfer-Function Matrix and the Characteristic Equation H-20 H-4-5 State Diagrams for Sampled-Data Systems H-23 H-5-1 BIBO Stability H-26 H-5-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 | E-9 | | | | | | | Root Loci at the Breakaway Point E-12 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 E-10 Calculation of K on the Root Loci E-16 H-4-4 Transfer-Function Matrix and the Characteristic Equation H-20 H-4-5 State Diagrams of Discrete-Data Systems H-22 H-4-6 State Diagrams for Sampled-Data Systems H-23 H-4-6 State Diagrams for Sampled-Data Systems H-23 H-5-1 Systems with Improper Loop Transfer F-1-2 Systems with Improper Loop Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 H-5-1 Stability of Discrete-Data Systems H-26 H-5-2 Zero-Input Stability H-26 II-5-3 Stability Tests of Discrete-Data Systems H-27 | | | | | H-4-3 | | | E-10 Calculation of K on the Root Loci E-16 H-4-4 Transfer-Function Matrix and the Characteristic Equation H-20 H-4-5 State Diagrams of Discrete-Data Systems H-22 F-1 Formulation of Nyquist Criterion F-1 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 H-4-5 State Diagrams of Discrete-Data Systems H-23 Stability of Discrete-Data Systems H-26 H-5-1 BIBO Stability H-26 H-5-2 Zero-Input Stability H-26 II-5-3 Stability Tests of Discrete-Data Systems H-27 H-5-1 BIBO Stability H-26 H-5-2 Transfer Function Matrix and the Characteristic Equation H-20 H-4-5 State Diagrams for Sampled-Data Systems H-23 H-5-1 BIBO Stability H-26 H-5-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 | | 13-9-2 | | | 11 1 5 | | | the Characteristic Equation H-20 H-4-5 State Diagrams of Discrete-Data Systems H-22 F-1 Formulation of Nyquist Criterion F-1 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 the Characteristic Equation H-20 H-4-5 State Diagrams of Discrete-Data Systems H-22 H-4-6 State Diagrams for Sampled-Data Systems H-23 H-5-1 BIBO Stability H-26 H-5-1 BIBO Stability H-26 H-5-2 Zero-Input Stability H-26 III-5-3 Stability Tests of Discrete-Data Systems H-27 | F-10 | Calculation | | | H-4-4 | | | General Nyquist Criterion F-1 F-1 Formulation of Nyquist Criterion F-1 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 H-4-5 State Diagrams of Discrete-Data Systems H-22 H-4-6 State Diagrams of Discrete-Data Systems H-23 Stability of Discrete-Data Systems H-26 H-5-1 BIBO Stability H-26 H-5-2 Zero-Input Stability H-26 II-5-3 Stability Tests of Discrete-Data Systems H-27 III-5-3 Stability Tests of Discrete-Data | E-10 | Carculation | it of K off the Root Exci 12 10 | | | | | General Nyquist Criterion F-1 Formulation of Nyquist Criterion F-1 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-1-2 Systems H-23 Systems H-23 Systems H-23 Systems H-23 Systems H-23 Systems H-23 Systems H-26 H-5-1 BIBO Stability H-26 H-5-2 Zero-Input Stability H-26 III-5-3 Stability Tests of Discrete-Data Systems H-27 III-5-3 Stability Tests of Discrete-Data | \$ A.F | PRINCIPAL I | ŗ | | H-4-5 | | | F-1 Formulation of Nyquist Criterion F-1 F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-1-2 Systems With Improper Loop Transfer F-2 Illustrative Examples—General Nyquist Criterion Minimum And Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion F-3 State Diagrams for Sampled-Data Systems H-23 F-2 Exposure Diagrams for Sampled-Data Systems H-23 F-2 Exposure Diagrams for Sampled-Data Systems H-23 F-3 Stability of Discrete-Data Systems H-26 F-3 Stability H-26 F-4 F-5-1 BIBO Stability H-26 F-5-2 Systems H-5-2 Zero-Input Stability Tests of Discrete-Data Systems H-5-2 Zero-Input Stability Tests of Discrete-Data Systems H-23 F-5-1 BIBO Stability H-26 F-6-1 BIBO Stability H-26 F-7-1 Systems H-27 F-7-2 | Gene | ral Nyquist | Criterion F-1 | | | Systems H-22 | | F-1-1 System with Minimum-Phase Loop Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum And Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum And Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion F-4 Illustrative Examples—General Nyquist Criterion Minimum And Nonminimum Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion F-3 Stability of Discrete-Data Systems H-26 H-5-1 BIBO Stability H-26 H-5-2 Zero-Input Stability H-26 Illustrative Examples—General Nyquist Criterion F-4 Stability of Discrete-Data Systems H-26 H-5-2 Zero-Input Stability H-26 H-5-2 Systems H-27 Illustrative Examples—General Nyquist Criterion F-4 Stability Of Discrete-Data Systems H-26 H-5-2 Zero-Input Stability H-26 H-5-2 Systems H-27 Illustrative Examples—General Nyquist Criterion F-4 Stability of Discrete-Data Systems H-26 H-5-2 Zero-Input Stability H-26 H-5-2 Systems H-27 Illustrative Examples—General Nyquist Criterion F-4 Stability of Discrete-Data Systems H-26 H-5-1 BIBO Stability H-26 H-5-2 Zero-Input Stability H-26 H-5-2 Systems H-27 Illustrative Examples—General Nyquist Criterion F-4 Systems H-27 Illustrative Examples—General Nyquist Criterion F-4 Systems H-27 Illustrative Examples—General Nyquist Criterion F-4 Stability of Discrete-Data Systems H-26 H-5-1 BIBO Stability H-26 H-5-2 Systems H-27 Illustrative Examples—General Nyquist Criterion F-4 Systems H-27 | F-1 | Formulatio | on of Nyauist Criterion F-1 | | H-4-6 | | | Transfer Functions F-4 F-1-2 Systems with Improper Loop Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 Minimum Representations F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum Representations F-4 F-3 Stability of Discrete-Data Systems H-26 H-5-1 BIBO Stability H-26 H-5-2 Zero-Input Stability H-26 III-5-3 Stability Tests of Discrete-Data Systems H-27 | 1 1 | | * 1 | | | Systems H-23 | | F-1-2 Systems with Improper Loop Transfer Functions F-4 F-2 Illustrative Examples—General Nyquist Criterion Minimum and Nonminimum Transfer Functions F-4 Minimum Representations F-4 Minimum F-1-2 Systems H-26 Minimum F-1-2 Systems H-27 Minimum F-1-2 Systems W-1-26 | | | | H-5 | Stability of | | | Functions F-4 H-5-2 Zero-Input Stability H-26 F-2 Illustrative Examples—General Nyquist Criterion H-5-3 Stability Tests of Discrete-Data Minimum and Nonminimum Transfer Functions F-4 Systems H-27 | | F-1-2 | | | | | | Minimum and Nonminimum Transfer Functions F-4 Systems H-27 W.G. Tive Device Reporting of Dispute Date | | | | | | | | Minimum and Nonminimum Transfer Functions F-4 Systems H-27 | F-2 | Illustrative | Examples—General Nyquist Criterion | | H-5-3 | · | | F-3 Stability Analysis of Multiloop Systems F-13 H-6 Time-Domain Properties of Discrete-Data | | | | ** - | | | | | F-3 | Stability A | nalysis of Multiloop Systems F-13 | H-6 | Time-Dom | nam Properties of Discrete-Data | | | | | | | | | | | Systems | H-31 | | H-10-2 | Digital Implementation of Analog | |------|------------|--------------------------------------|-------|------------|--------------------------------------| | | H-6-1 | Time Response of Discrete-Data | | | Controllers II-52 | | | | Control Systems H-31 | | H-10-3 | Digital Implementation of the PID | | | H-6-2 | Mapping between s-Plane and z-Plane | | | Controller II-54 | | | | Trajectories H-34 | | H-10-4 | Digital Implementation of Lead and | | | H-6-3 | Relation between Characteristic- | | | Lag Controllers H-57 | | | | Equation Roots and Transient | II-11 | Digital Co |
ontrollers H-58 | | | | Response II-38 | | H-11-1 | Physical Realizability of Digital | | H-7 | Steady-Sta | te Error Analysis of Discrete-Data | | | Controllers H-58 | | | Control Sy | rstems H-41 | H-12 | | Discrete-Data Control Systems in | | H-8 | | of Discrete-Data Systems H-45 | | the Frequ | ency Domain and the z-Plane H-61 | | H-9 | Frequency | -Domain Analysis of Discrete-Data | | H-12-1 | Phase-Lead and Phase-Lag Controllers | | | Control Sy | stems H-49 | | | in the w -Domain H-61 | | | H-9-1 | Bode Plot with the | H-13 | | Discrete-Data Control Systems | | | | $w ext{-Transformation} ext{H-50}$ | | | lbeat Response H-68 | | H-10 | Design of | Discrete-Data Control Systems H-51 | H-14 | | ement Design with State | | | H-10-1 | Introduction H-51 | | Feedback | H-70 |