Introduction to Geographic Information Systems

Kang-Tsung Chang
CONTENTS

Preface xiii

CHAPTER 1

INTRODUCTION 1

1.1 GIS 1
 1.1.1 Components of a GIS 2
 1.1.2 A Brief History of GIS 3
 1.1.3 GIS Software Products 3
 Box 1.1 A List of GIS Software Producers and Their Main Products 4
1.2 GIS Applications 4
1.3 Geospatial Data 5
 1.3.1 Coordinate Systems 5
 Box 1.2 Google Maps, Microsoft Virtual Earth, and Yahoo! Maps 6
 Box 1.3 Monitoring by GPS 6
 1.3.2 Vector Data Model 6
 1.3.3 Raster Data Model 8
1.4 GIS Operations 8
 1.4.1 Data Acquisition 8
 1.4.2 Attribute Data Management 8
 1.4.3 Data Display 9
 1.4.4 Data Exploration 9
 1.4.5 Data Analysis 9
 1.4.6 GIS Models and Modeling 10
1.5 Organization of This Book 11
1.6 Concepts and Practice 12
Key Concepts and Terms 13
Review Questions 13
Applications: Introduction 14
 Task 1: Introduction to ArcCatalog 14

CHAPTER 2

COORDINATE SYSTEMS 18

2.1 Geographic Coordinate System 19
 2.1.1 Approximation of the Earth 20
 2.1.2 Datum 21
 Box 2.1 NGS Benchmark Database 21
2.2 Map Projections 23
 2.2.1 Types of Map Projections 23
 Box 2.2 How to Measure Distances on the Earth’s Surface 23
 2.2.2 Map Projection Parameters 24
2.3 Commonly Used Map Projections 26
 2.3.1 Transverse Mercator 27
 2.3.2 Lambert Conformal Conic 27
 2.3.3 Albers Equal-Area Conic 28
 2.3.4 Equidistant Conic 28
2.4 Projected Coordinate Systems 28
 Box 2.3 Map Scale 29
 2.4.1 The Universal Transverse Mercator (UTM) Grid System 29
 2.4.2 The Universal Polar Stereographic (UPS) Grid System 30
 2.4.3 The State Plane Coordinate (SPC) System 30
 2.4.4 The Public Land Survey System (PLSS) 31
2.5 Working with Coordinate Systems in GIS 33
 2.5.1 Projection File 33
CHAPTER 3

VECTOR DATA MODEL 41

3.1 Representation of Simple Features 42
 Box 3.1 Geodatabase, Shapefile, and Coverage for ESRI Software 42

3.2 Topology 43
 3.2.1 TIGER 43
 Box 3.2 Adjacency and Incidence 44
 3.2.2 Importance of Topology 45
 Box 3.3 Topology or No Topology 46

3.3 Georelational Data Model 46
 3.3.1 The Coverage 46
 3.3.2 Coverage Data Structure 47
 3.3.3 Non-topological Vector Data 48

3.4 Object-Based Data Model 49
 3.4.1 Classes and Class Relationships 49
 3.4.2 Interface 50
 Box 3.4 How to Use an Interface 51
 Box 3.5 ArcObjects and ArcGIS 51

3.4.3 The Geodatabase 51
3.4.4 Topology Rules 52
3.4.5 Advantages of the Geodatabase 53
 Box 3.6 NHDinGEO 53

3.5 Representation of Composite Features 54
 3.5.1 TINs 54
 3.5.2 Regions 55
 3.5.3 Routes 56

CHAPTER 4

RASTER DATA MODEL 65

4.1 Elements of the Raster Data Model 66
 4.1.1 Cell Value 66
 Box 4.1 Rules in Determining a Categorical Cell Value 67
 4.1.2 Cell Size 67
 4.1.3 Raster Bands 67
 4.1.4 Spatial Reference 67

4.2 Types of Raster Data 68
 4.2.1 Satellite Imagery 68
 4.2.2 USGS Digital Elevation Models (DEMs) 69
 Box 4.2 No-Data Slivers in a 7.5-minute DEM 70
 4.2.3 Non-USGS DEMs 71
 4.2.4 Global DEMs 71
 4.2.5 Digital Orthophotos 72
 4.2.6 Bi-Level Scanned Files 72
 4.2.7 Digital Raster Graphics (DRGs) 73
 4.2.8 Graphic Files 73
 4.2.9 GIS Software-Specific Raster Data 73

4.3 Raster Data Structure 74
 4.3.1 Cell-by-Cell Encoding 74
 4.3.2 Run-Length Encoding 74
 4.3.3 Quad Tree 75
 4.3.4 Header File 76
 Box 4.3 A Header File Example 76

4.4 Raster Data Compression 77
 Box 4.4 A Simple Wavelet Example: The Haar Wavelet 78
CHAPTER 5

GIS DATA ACQUISITION 87

5.1 Existing GIS Data 88
 5.1.1 Federal Geographic Data Committee 88
 5.1.2 Geospatial One-Stop 88
 5.1.3 U.S. Geological Survey 88
 Box 5.1 Clearinghouse and Portal 89
 5.1.4 U.S. Census Bureau 89
 5.1.5 Natural Resources Conservation Service 90
 5.1.6 Statewide Public Data: An Example 90
 5.1.7 Regional Public Data: An Example 90
 5.1.8 Metropolitan Public Data: An Example 90
 5.1.9 County-Level Public Data: An Example 90
 5.1.10 GIS Data from Private Companies 90

5.2 Metadata 91

5.3 Conversion of Existing Data 91
 5.3.1 Direct Translation 91
 Box 5.2 ISO Metadata Standards 91
 5.3.2 Neutral Format 92

5.4 Creating New Data 93
 5.4.1 Remotely Sensed Data 93
 Box 5.3 Importing DLG, SDTS, TIGER, and VPF Files in ArcGIS 93
 5.4.2 Field Data 94
 Box 5.4 An Example of GPS Data 95
 5.4.3 Text Files with x-, y-Coordinates 97
 5.4.4 Digitizing Using a Digitizing Table 97
 5.4.5 Scanning 98
 Box 5.5 Vectorization Settings in ArcGIS 101

5.4.6 On-Screen Digitizing 101
 5.4.7 Importance of Source Maps 101

Key Concepts and Terms 102

Review Questions 103

Applications: GIS Data Application 104
 Task 1: Download and Process DEM and DLG from the Internet 104
 Task 2: Digitize On-Screen in ArcMap 105
 Task 3: Add XY Data in ArcMap 106
 Task 4: Access California Watersheds on the Geography Network Map Server 107

Challenge Task 107

References 108

CHAPTER 6

GEOMETRIC TRANSFORMATION 109

6.1 Geometric Transformation 110
 6.1.1 Map-to-Map and Image-to-Map Transformation 110
 6.1.2 Transformation Methods 110
 6.1.3 Affine Transformation 111
 6.1.4 Control Points 112
 Box 6.1 Estimation of Transformation Coefficients 113
 Box 6.2 Output from an Affine Transformation 113

6.2 Root Mean Square (RMS) Error 114
 Box 6.3 RMS from an Affine Transformation 115

6.3 Interpretation of RMS Errors on Digitized Maps 115

6.4 Resampling of Pixel Values 117
 6.4.1 Resampling Methods 117
 6.4.2 Other Uses of Resampling 117
 Box 6.4 Computation for Bilinear Interpolation 118
 Box 6.5 Pyramiding 118

Key Concepts and Terms 118

Review Questions 119

Applications: Geometric Transformation 120
 Task 1: Georeference and Rectify a Scanned Map 120
 Task 2: Use ArcScan to Vectorize Raster Lines 121
CHAPTER 9

DATA DISPLAY AND CARTOGRAPHY 168

9.1 Cartographic Representation 169
9.1.1 Spatial Features and Map Symbols 170
9.1.2 Use of Color 171
9.1.3 Data Classification 172
9.1.4 Generalization 172

9.2 Types of Quantitative Maps 173
 Box 9.1 Representations 173
 Box 9.2 Locating Dots on a Dot Map 175
 Box 9.3 Mapping Derived and Absolute Values 175

9.3 Typography 176
9.3.1 Type Variations 176
9.3.2 Selection of Type Variations 177
9.3.3 Placement of Text in the Map Body 177
 Box 9.4 Options for Dynamic Labeling 179

9.4 Map Design 180
9.4.1 Layout 180
 Box 9.5 Wizards for Adding Map Elements 183
9.4.2 Visual Hierarchy 184

9.5 Map Production 185
 Box 9.6 Working with Soft-Copy Maps 186
 Box 9.7 A Web Tool for Making Color Maps 188

Key Concepts and Terms 188
Review Questions 189

Applications: Data Display and Cartography 190
 Task 1: Make a Choropleth Map 190
 Task 2: Use Graduated Symbols, Line Symbols, Highway Shield Symbols, and Text Symbols 192
 Task 3: Label Streams 195
 Challenge Task 196

References 196

CHAPTER 10

DATA EXPLORATION 198

10.1 Data Exploration 199
10.1.1 Descriptive Statistics 199
 Box 10.1 Data Visualization 199
10.1.2 Graphs 200
 Box 10.2 Descriptive Statistics 200
10.1.3 Dynamic Graphics 203

10.2 Map-Based Data Manipulation 204
10.2.1 Data Classification 204
 Box 10.3 Geovisualization 204
10.2.2 Spatial Aggregation 205
10.2.3 Map Comparison 205

10.3 Attribute Data Query 206
10.3.1 SQL (Structured Query Language) 207
 Box 10.4 Query Methods in ArcGIS 207
10.3.2 Query Expressions 208
10.3.3 Type of Operation 209
10.3.4 Examples of Query Operations 210
10.3.5 Relational Database Query 210

10.4 Spatial Data Query 211
10.4.1 Feature Selection by Cursor 211
10.4.2 Feature Selection by Graphic 211
10.4.3 Feature Selection by Spatial Relationship 212
10.4.4 Combining Attribute and Spatial Data Queries 212
 Box 10.5 Expressions of Spatial Relationships in ArcMap 213

10.5 Raster Data Query 213
10.5.1 Query by Cell Value 213
10.5.2 Query by Select Features 214

Key Concepts and Terms 214
Review Questions 215

Applications: Data Exploration 215
 Task 1: Select Feature by Location 216
 Task 2: Make Dynamic Chart 216
 Task 3: Query Attribute Data from a Joint Attribute Table 217
 Task 4: Query Attribute Data from a Relational Database 218
 Task 5: Combine Spatial and Attribute Data Queries 218
 Task 6: Query Raster Data 219
 Challenge Task 219

References 220
CHAPTER 11

VECTOR DATA ANALYSIS 222

11.1 Buffering 223
 11.1.1 Variations in Buffering 223
 Box 11.1 Riparian Buffer Width 224
 11.1.2 Applications of Buffering 225
11.2 Overlay 225
 11.2.1 Feature Type and Overlay 226
 11.2.2 Overlay Methods 227
 11.2.3 Overlay of Shapefiles 228
 11.2.4 Slivers 228
 Box 11.2 Overlay Methods in ArcGIS 228
 11.2.5 Error Propagation in Overlay 230
 11.2.6 Applications of Overlay 230
 Box 11.3 Error Propagation Models 230
11.3 Distance Measurement 231
 Box 11.4 Distance Measurement Using ArcGIS 232
11.4 Pattern Analysis 232
 11.4.1 Point Pattern Analysis 232
 11.4.2 Moran’s I for Measuring Spatial Autocorrelation 233
 11.4.3 G-Statistic for Measuring High/Low Clustering 235
 11.4.4 Applications of Pattern Analysis 236
11.5 Feature Manipulation 237
 Box 11.5 Feature Manipulation Using ArcGIS 237
Key Concepts and Terms 240
Review Questions 241
Applications: Vector Data Analysis 241
 Task 1: Perform Buffering and Overlay 242
 Task 2: Overlay Multicomponent Polygons 243
 Task 3: Measure Distances between Points and Lines 243
 Task 4: Compute General and Local G-Statistics 244
 Challenge Task 244
References 245

CHAPTER 12

RASTER DATA ANALYSIS 248

12.1 Data Analysis Environment 249
12.2 Local Operations 249

Box 12.1 How to Make an Analysis Mask 249

12.2.1 Local Operations with a Single Raster 250
12.2.2 Reclassification 250
12.2.3 Local Operations with Multiple Rasters 250
12.2.4 Applications of Local Operations 252
 Box 12.2 Local Operations in ArcGIS 252
12.3 Neighborhood Operations 253
 12.3.1 Neighborhood Statistics 253
 Box 12.3 Neighborhood Operations in ArcGIS 254
 12.3.2 Applications of Neighborhood Operations 254
12.4 Zonal Operations 255
 12.4.1 Zonal Statistics 255
 Box 12.4 More Examples of Neighborhood Operations 256
 12.4.2 Applications of Zonal Operations 256
12.5 Physical Distance Measure Operations 257
 Box 12.5 Zonal Operations in ArcGIS 257
 12.5.1 Allocation and Direction 258
 12.5.2 Applications of Physical Distance Measure Operations 258
 Box 12.6 Distance Measure Operations in ArcGIS 259
12.6 Other Raster Data Operations 259
 12.6.1 Raster Data Management 259
 12.6.2 Raster Data Extraction 260
 12.6.3 Raster Data Generalization 260

12.7 Comparison of Vector- and Raster-Based Data Analysis 261
 12.7.1 Overlay 261
 12.7.2 Buffering 262
Key Concepts and Terms 262
Review Questions 263
Applications: Raster Data Analysis 263
 Task 1: Perform a Local Operation 264
 Task 2: Perform a Combine Operation 264
 Task 3: Perform a Neighborhood Operation 264
 Task 4: Perform a Zonal Operation 265
 Task 5: Measure Physical Distances 265
 Challenge Task 266
References 266
CHAPTER 13

TERRAIN MAPPING AND ANALYSIS 268

13.1 Data for Terrain Mapping and Analysis 269
 13.1.1 DEM 269
 13.1.2 TIN 269
 Box 13.1 Terrain Data Format 270
13.2 Terrain Mapping 271
 13.2.1 Contouring 271
 13.2.2 Vertical Profiling 272
 13.2.3 Hill Shading 272
 Box 13.2 The Pseudoscopic Effect 273
 Box 13.3 A Worked Example of Computing Relative Radiance 273
 13.2.4 Hypsometric Tinting 274
 13.2.5 Perspective View 274
13.3 Slope and Aspect 276
 13.3.1 Computing Algorithms for Slope and Aspect Using Raster 277
 Box 13.4 Conversion of D to Aspect 278
 13.3.2 Computing Algorithms for Slope and Aspect Using TIN 278
 Box 13.5 A Worked Example of Computing Slope and Aspect Using Raster 279
 13.3.3 Factors Influencing Slope and Aspect Measures 279
 Box 13.6 A Worked Example of Computing Slope and Aspect Using TIN 280
13.4 Surface Curvature 281
 Box 13.7 A Worked Example of Computing Surface Curvature 282
13.5 Raster versus TIN 282
 Box 13.8 Terrain Mapping and Analysis Using ArcGIS 283

Key Concepts and Terms 284
Review Questions 284
Applications: Terrain Mapping and Analysis 285
 Task 1: Use DEM for Terrain Mapping 285
 Task 2: Derive Slope, Aspect, and Curvature from DEM 287
 Task 3: Build and Display a TIN 288
Challenges Task 288

References 289

CHAPTER 14

VIEWSHEDS AND WATERSHEDS 291

14.1 Viewshed Analysis 292
 14.1.1 Line-of-Sight Operation 292
 14.1.2 Raster-Based Viewshed Analysis 293
 14.1.3 TIN-Based Viewshed Analysis 293
 14.1.4 Cumulative Viewshed 293
 14.1.5 Accuracy of Viewshed Analysis 293
14.2 Parameters of Viewshed Analysis 294
 Box 14.1 Tools for Selecting Viewpoints 295
 Box 14.2 Parameters for Viewshed Analysis 297
14.3 Applications of Viewshed Analysis 297
14.4 Watershed Analysis 297
 Box 14.3 Watershed Boundary Dataset (WBD) 298
 14.4.1 Filled DEM 298
 14.4.2 Flow Direction 298
 14.4.3 Flow Accumulation 299
 14.4.4 Stream Network 300
 14.4.5 Stream Links 301
 14.4.6 Areawide Watersheds 301
 14.4.7 Point-Based Watersheds 302
 Box 14.4 Snapping Pour Points 303
14.5 Factors Influencing Watershed Analysis 304
14.6 Applications of Watershed Analysis 305
Key Concepts and Terms 306
Review Questions 307
Applications: Viewsheds and Watersheds 307
 Task 1: Perform Viewshed Analysis 307
 Task 2: Create a New Lookout Shapefile for Viewshed Analysis 308
 Task 3: Delineate Areawide Watersheds 309
 Task 4: Derive Upstream Contributing Areas at Pour Points 310
 Challenges Task 311
References 312

CHAPTER 15

SPATIAL INTERPOLATION 315

15.1 Elements of Spatial Interpolation 316
 15.1.1 Control Points 316
 15.1.2 Type of Spatial Interpolation 316
CHAPTER 16

GEOCODING AND DYNAMIC SEGMENTATION 346

16.1 Geocoding 347
 16.1.1 Geocoding Reference Database 347
 16.1.2 The Address Matching Process 348
 16.1.3 Address Matching Options 348
 Box 16.1 Scoring System for Geocoding 349
 16.1.4 Acceptable Matched Rate 350
 16.1.5 Offset Plotting Options 350

16.2 Variations of Geocoding 350

16.3 Applications of Geocoding 351
 16.3.1 Location-Based Services 351
 16.3.2 Business Applications 351
 16.3.3 Wireless Emergency Services 352
 16.3.4 Crime Mapping and Analysis 352
 16.3.5 Public Health 352

16.4 Dynamic Segmentation 352
 16.4.1 Routes 352
 Box 16.2 Linear Location Referencing System 353
 16.4.2 Creating Routes 354
 Box 16.3 Route Feature Classes 354
 Box 16.4 Create Routes Using ArcGIS 355
 16.4.3 Events 356
 16.4.4 Creating Event Tables 356

16.5 Applications of Dynamic Segmentation 358
 16.5.1 Data Management 358
 16.5.2 Data Display 358
 16.5.3 Data Query 358
 16.5.4 Data Analysis 358

Key Concepts and Terms 359
Review Questions 360

Applications: Geocoding and Dynamic Segmentation 360
 Task 1: Geocode Street Addresses 360
 Task 2: Display and Query Routes and Events 361
 Task 3: Analyze Two Event Layers 362
 Task 4: Create a Stream Route and Analyze Slope along the Route 363
 Task 5: Locate Cities along U.S. Interstate 5 364
Challenge Task 364
References 365
CHAPTER 17

PATH ANALYSIS AND NETWORK APPLICATIONS 367

17.1 Path Analysis 368
 17.1.1 Source Raster 368
 17.1.2 Cost Raster 368
 17.1.3 Cost Distance Measures 368
 Box 17.1 Cost Raster for a Site Analysis of Pipelines 368
 17.1.4 Deriving the Least Accumulative Cost Path 369
 Box 17.2 Derivation of the Least Accumulative Cost Path 371
 17.1.5 Improvements for Cost Distance Measures 372
 Box 17.3 Cost Distance Measure Operations in ArcGIS 372

17.2 Applications of Path Analysis 373

17.3 Network 373
 17.3.1 Link and Link Impedance 373
 17.3.2 Junction and Turn Impedance 373
 17.3.3 One-Way or Closed Streets 374
 17.3.4 Overpasses and Underpasses 374

17.4 Putting Together a Network 374
 Box 17.4 Networks in ArcGIS 375
 17.4.1 Gathering Linear Features 375
 17.4.2 Building Topology 375
 17.4.3 Attributing the Network Features 375
 Box 17.5 Network Attributes 376
 Box 17.6 Turn Table and Turn Feature Class 376

17.5 Network Applications 377
 17.5.1 Shortest Path Analysis 377
 17.5.2 Closest Facility 379
 17.5.3 Allocation 379
 17.5.4 Location–Allocation 381
 17.5.5 Urban Transportation Planning Model 383
 Box 17.7 Network Analysis Using ArcGIS 383

Key Concepts and Terms 384
Review Questions 384
Applications: Path Analysis and Network Applications 385
 Task 1: Compute the Least Accumulative Cost Distance 385
 Task 2: Compute the Path Distance 386

Task 3: Run Shortest Path Analysis 386
Task 4: Build a Geodatabase Network Dataset 388
Task 5: Find Closest Facility 389
Task 6: Find Service Area 389
Challenge Task 390
References 390

CHAPTER 18

GIS MODELS AND MODELING 392

18.1 Basic Elements of GIS Modeling 393
 18.1.1 Classification of GIS Models 393
 18.1.2 The Modeling Process 393
 18.1.3 The Role of GIS in Modeling 394
 18.1.4 Integration of GIS and Other Modeling Programs 395

18.2 Binary Models 395

18.3 Index Models 396
 18.3.1 The Weighted Linear Combination Method 396
 Box 18.1 The Conservation Reserve Program 397
 Box 18.2 Geoprocessing Tools in ArcGIS 399
 18.3.2 Other Index Methods 400
 18.3.3 Applications of the Index Model 401

18.4 Regression Models 402
 18.4.1 Linear Regression Models 402
 18.4.2 Logistic Regression Models 402

18.5 Process Models 403
 18.5.1 Soil Erosion Models 403
 Box 18.3 Explanation of the Six Factors in RUSLE 405
 18.5.2 Other Examples of Environmental Models 405
 Box 18.4 Looping in ArcGIS 406

18.5.3 GIS and Process Models 406

Key Concepts and Terms 407
Review Questions 407
Applications: GIS Models and Modeling 408
 Task 1: Build a Vector-Based Binary Model 408
 Task 2: Build a Raster-Based Binary Model 409
 Task 3: Build a Vector-Based Index Model 409
 Task 4: Build a Raster-Based Index Model 411
 Challenge Task 413

References 413

Index 419