Jorge A. C. Ambrósio Peter Eberhard **Editors**

Advanced Design of Mechanical Systems: From Analysis to Optimization

CISM Courses and Lectures, vol. 511

⁄ SpringerWien NewYork

TABLE OF CONTENTS

Preface

1.	Planar Multibody Systems	1
	1.1. Introduction	1
	1.2. Cartesian Coordinates	1
	1.3. Kinematic Constraints	4
	1.4. Drivers	8
	1.5. Solution of the Kinematic Problem	10
	1.6. Velocities and Accelerations	13
	1.7. Newton's Equation	15
	1.8. Forces	17
	1.9. Numerical Integration	20
2.	Spatial Multibody Systems	23
	2.1. Introduction to Spatial Kinematic Constraints	23
	2.2. Rotational Coordinates	23
	2.3. Kinematic Constraints	27
	2.4. Kinematic Joints	30
	2.5. Newton-Euler Equations	33
	2.6. Forces	36
	2.7. Solution of the Equations of Motion	37
3.	Synthesis of Mechanisms	39
	3.1. Introduction	39
	3.2. The Joint Coordinate Method	42
	3.3. Optimization Using Time-Varying Design Variables	47
	3.4. Optimization Using Dynamics	52
	3.5. Synthesis Allowing for Non-Assembly	54
4.	Differential-Geometric Aspects of Constrained System Dynamics	67
	4.1. Introduction	67
	4.2. Unconstrained System Dynamics	67
	4.3. Constraint Equations	74
	4.4. Constraint Reactions and Constraint Reaction-Induced	
	Dynamic Equations	77
5.	Dependent Variable Formulations	83
	5.1. Introduction	83
	5.2. Governing Equations in DAE Forms	83

	5.3. 5.4,	ODE Forms of the Equations of Motion Constraint Violation Problem	89 91
	5.5.	Aspects of Accuracy of Constraint-Consistent Solutions	97
6.	Indepe	endent Variable Formulation	107
	6.1.	Introduction	107
	6.2.	Joint Coordinate Formulation for Open-Loop Systems	107
	6.3.	Velocity Partitioning Formulation	112
	6.4.	General Projective Scheme for Independent Variable	
		Formulations	117
	6.5.	Treatment of Closed-Loop Multibody Systems	120
7.	Other	Useful Modeling and Simulation Techniques	131
	7.1.	Introduction	131
	7.2.	Augmented Lagrangian Formulation	131
	7.3.	Augmented Joint Coordinate Method	142
8.	Sensitivity Analysis: Linear Static Spring Systems		151
	8.1.	Introduction	151
	8.2.	Notation	152
	8.3.	Static Analysis	154
	8.4.	Solution Strategy	158
	8.5.	Finite Element Program	161
	8.6.	Sensitivity Analysis	172
	8.7.	Sensitivity Computer Program	182
	8.8.	Optimization Problems	190
9.	Sensit	ivity Analysis: Nonlinear Static Spring Systems	195
	9.1.	Nonlinear Linear Static Spring Systems	195
	9.2.	Newton Raphson Method	197
	9.3.	Sensitivity Analysis: Nonlinear Elastic Static Spring Systems	206
	9.4.	Transient Problems	216
10.	. Sensitivity Analysis: Generalized Coordinate Kinematic Systems		
		Position Analysis	219
		Velocity and Acceleration Analysis	225
	10.3.	Inverse Dynamic Analysis	226
		Sensitivity Analysis	231
	10.5.	Conclusion	235

11.	Optim	ization of Mechanical Systems	237	
		Introduction	237	
		Optimization Algorithms	240	
		An Example from Multibody Dynamics	245	
		Concluding Remarks	250	
	11	<u> </u>		
12.	Using Augmented Particle Swarm Optimization for Constrained			
	Proble	ms in Engineering	253	
	12.1.	The Basic PSO Algorithm	256	
	12.2.	Augmented LagrangeMultiplier Method	257	
	12.3.	Augmented Lagrange Particle Swarm Optimization	260	
		Web-Based Optimization with ALPSO	264	
	12.5.	Engineering Example: Hexapod Robot	265	
		Concluding Remarks	269	
13.	Optimization of Mechatronic Systems Using the Software			
		ge NEWOPT/AIMŞ	273	
		Optimization of Mechatronic Systems	274	
		Software Package NEWOPT/AIMS	276	
	13.3.	Example: Hexapod Manipulator	280	
	13.4.	Concluding Remarks	284	
1.4	Tonol	ogy Optimized Synthesis of Planar Kinematic Rigid		
14.		Mechanisms	287	
		Topology Representation of Mechanisms	289	
			291	
		Genetic Algorithms Vinematic Analysis and Dimensional Synthesis	292	
		Kinematic Analysis and Dimensional Synthesis	296	
		Topology Optimization of Mechanisms	290 299	
	14.5.	Concluding Remarks	299	
15.	5. Grid-Based Topology Optimization of Rigid Body Mechanisms			
		Grid Structures for Topology Optimization	304	
		Kinematic Analysis	305	
		Mechanism Design Using Grid Structures	307	
		Amplifier Mechanism Example	313	
		Concluding Remarks	313	
	20.0.			
16.	6. Lumped Deformations: a Plastic Hinge Approach			
	16.1	Introduction	317	
	16.2	Flexible Multibody Dynamics by Lumped Deformations	319	
	16.3		322	
		Continuous Contact Force Model	324	

	16.5	Road Vehicle Multibody Model for Crash Analysis	326
	16.6	Application to the Design of Railway Dynamics Crash Tests	336
17.	Distril	outed Deformation: a Finite Element Method	351
	17.1	Introduction	351
	17.2	Brief Literature Overview	351
	17.3	General Deformation of a Flexible Body	354
	17.4	Reference Conditions in a Flexible Body: Linear	
		Elastic Deformations	356
	17.5	Generalized Elastic Coordinates for Linear Flexible Bodies	358
	17.6	Generalized Coordinates for Nonlinear Flexible Bodies	361
	17.7	Kinematic Joints Involving Flexible Bodies	362
	17.8	Demonstration Examples	368
18.	Optim	nization of Flexible Multibody Systems	375
	18.1	Introduction	375
	18.2	Road Vehicle Multibody Model	376
	18.3	Road Vehicle Simulations for Comfort and Handling	383
	18.4	Vehicle Dynamics Optimization for Comfort and Handling	393
	18.5	Minimization of the Maximum Deformation Energy	399
	18.6	Sensitivity Analysis in Flexible Multibody Dynamics	401
	18.7	Demonstrative Example: Flexible Slider-Crank Mechanism	407
	18.8	Optimization of the Deployment of a Satellite Antenna	414
	18.9	Conclusions	422