A Guided Tour of Mathematical Methods for the Physical Sciences

Second Edition

Roel Snieder

CAMBRIDGE

Contents

	Preface to Second Edition	page xiii
	Acknowledgements	xiv
1	Introduction	1
2	Dimensional analysis	3
2.1	Two rules for physical analysis	3
2.2	A trick for finding mistakes	6
2.3	Buckingham pi theorem	7
2.4	Lift of a wing	11
2.5	Scaling relations	12
2.6	Dependence of pipe flow on the radius of the pipe	13
3	Power series	16
3.1	Taylor series	16
3.2	Growth of the Earth by cosmic dust	22
3.3	Bouncing ball	24
3.4	Reflection and transmission by a stack of layers	27
4	Spherical and cylindrical coordinates	31
4.1	Introducing spherical coordinates	31
4.2	Changing coordinate systems	35
4.3	Acceleration in spherical coordinates	37
4.4	Volume integration in spherical coordinates	40
4.5	Cylindrical coordinates	43
5	Gradient	46
5.1	Properties of the gradient vector	46
5.2	Pressure force	50
5.3	Differentiation and integration	53
5.4	Newton's law from energy conservation	55
5.5	Total and partial time derivatives	57
5.6	Gradient in spherical coordinates	61

6 Divergence of a vector field6.1 Flux of a vector field	64 64
	• •
6.2 Introduction of the divergence	66
6.3 Sources and sinks	69
6.4 Divergence in cylindrical coordinates	71
6.5 Is life possible in a five-dimensional world?	73
7 Curl of a vector field	78
7.1 Introduction of the curl	78
7.2 What is the curl of the vector field?	80
7.3 First source of vorticity: rigid rotation	81
7.4 Second source of vorticity: shear	83
7.5 Magnetic field induced by a straight current	85
7.6 Spherical coordinates and cylindrical coordinates	86
8 Theorem of Gauss	88
8.1 Statement of Gauss's law	88
8.2 Gravitational field of a spherically symmetric mass	89
8.3 Representation theorem for acoustic waves	91
8.4 Flowing probability	93
9 Theorem of Stokes	97
9.1 Statement of Stokes's law	97
9.2 Stokes's theorem from the theorem of Gauss	100
9.3 Magnetic field of a current in a straight wire	102
9.4 Magnetic Induction and Lenz's law	103
9.5 Aharonov–Bohm effect	104
9.6 Wingtips vortices	108
10 Laplacian	113
10.1 Curvature of a function	113
10.2 Shortest distance between two points	117
10.3 Shape of a soap film	120
10.4 Sources of curvature	124
10.5 Instability of matter	126
10.6 Where does lightning start?	128
10.7 Laplacian in spherical and cylindrical coordinates	129
10.8 Averaging integrals for harmonic functions	130
11 Conservation laws	133
11.1 General form of conservation laws	133
11.2 Continuity equation	135
11.3 Conservation of momentum and energy	136
11.4 Heat equation	140
11.5 Explosion of a nuclear bomb	145

11.6	Viscosity and the Navier–Stokes equation	147
11.7	Quantum mechanics and hydrodynamics	150
12	Scale analysis	153
12.1	Vortex in a bathtub	154
12.2	Three ways to estimate a derivative	156
12.3	Advective terms in the equation of motion	159
12.4	Geometric ray theory	162
12.5	Is the Earth's mantle convecting?	167
12.6	Making an equation dimensionless	169
13	Linear algebra	173
13.1	Projections and the completeness relation	173
13.2	Projection on vectors that are not orthogonal	177
13.3	Coriolis force and centrifugal force	179
13.4	Eigenvalue decomposition of a square matrix	184
13.5	Computing a function of a matrix	187
13.6	Normal modes of a vibrating system	189
13.7	Singular value decomposition	192
13.8	Householder transformation	197
14	Dirac delta function	202
14.1	Introduction of the delta function	202
14.2	Properties of the delta function	206
14.3	Delta function of a function	208
14.4	Delta function in more dimensions	210
14.5	Delta function on the sphere	210
14.6	Self energy of the electron	212
15	Fourier analysis	217
15.1	Real Fourier series on a finite interval	217
15.2	Complex Fourier series on a finite interval	221
15.3	Fourier transform on an infinite interval	223
15.4	Fourier transform and the delta function	224
15.5	Changing the sign and scale factor	225
15.6	Convolution and correlation of two signals	228
15.7	Linear filters and the convolution theorem	231
15.8	Dereverberation filter	234
15.9	Design of frequency filters	238
15.10	Linear filters and linear algebra	240
16	Analytic functions	245
16.1	Theorem of Cauchy-Riemann	245
16.2	Electric potential	249
16.3	Fluid flow and analytic functions	251

17	Complex integration	254
17.1	Nonanalytic functions	254
17.2	Residue theorem	255
17.3	Solving integrals without knowing the primitive function	259
17.4	Response of a particle in syrup	262
18	Green's functions: principles	267
18.1	Girl on a swing	267
18.2	You have seen Green's functions before!	272
18.3	Green's functions as impulse response	273
18.4	Green's functions for a general problem	276
18.5	Radiogenic heating and the Earth's temperature	279
18.6	Nonlinear systems and the Green's functions	284
19	Green's functions: examples	288
19.1	Heat equation in N dimensions	288
19.2	Schrödinger equation with an impulsive source	292
19.3	Helmholtz equation in one, two, and three dimensions	296
19.4	Wave equation in one, two, and three dimensions	302
19.5	If I can hear you, you can hear me	308
20	Normal modes	311
20.1	Normal modes of a string	312
20.2	Normal modes of a drum	314
20.3	Normal modes of a sphere	317
20.4	Normal modes of orthogonality relations	323
20.5	Bessel functions behave as decaying cosines	327
20.6	Legendre functions behave as decaying cosines	330
20.7	Normal modes and the Green's function	334
20.8	Guided waves in a low-velocity channel	340
20.9	Leaky modes	344
20.10	Radiation damping	348
21	Potential theory	353
21.1	Green's function of the gravitational potential	354
21.2	Upward continuation in a flat geometry	356
21.3	Upward continuation in a flat geometry in three dimensions	359
21.4	Gravity field of the Earth	361
21.5	Dipoles, quadrupoles, and general relativity	365
21.6	Multipole expansion	369
21.7	Quadrupole field of the Earth	374
21.8	Fifth force	377
22	Cartesian tensors	379
22.1	Coordinate transforms	379

22.2	Unitary matrices	382
22.3	Shear or dilatation?	385
22.4	Summation convention	389
22.5	Matrices and coordinate transforms	391
22.6	Definition of a tensor	391
22.7	Not every vector is a tensor	396
22.8	Products of tensors	398
22.9	Deformation and rotation again	398 401
22.10	Stress tensor	401
22.10	Why pressure in a fluid is isotropic	403 406
22.11	Special relativity	408
23	•	
23.1	Perturbation theory	412 413
23.1	Regular perturbation theory Born approximation	413
23.2	• •	
23.4	Limits on porturbation theory	421
23.5	Limits on perturbation theory	424
23.6	WKB approximation Need for consistency	427
23.7	•	431
23.7 24	Singular perturbation theory	433
24.1	Asymptotic evaluation of integrals	437
24.1	Simplest tricks What does not have to do with n and (= 2)	437
24.2	What does $n!$ have to do with e and $\sqrt{\pi}$?	441
24.3 24.4	Method of steepest descent	445
24.4	Group velocity and the method of stationary phase	450
24.5	Asymptotic behavior of the Bessel function $J_0(x)$	453
	Image source	456
25	Variational calculus	461
25.1	Designing a can	461
25.2	Why are cans round?	463
25.3	Shortest distance between two points	465
25.4	The great-circle	468
25.5	Euler-Lagrange equation	472
25.6	Lagrangian formulation of classical mechanics	476
25.7	Rays are curves of stationary travel time	478
25.8	Lagrange multipliers	481
25.9	Designing a can with an optimal shape	485
25.10	The chain line	487
26	Epilogue, on power and knowledge	492
	References	494
	Index	500