Performance Analysis of Communications Networks and Systems

Contents

Pre	Preface		xi
1	Intro	duction	1
	Part	I Probability theory	7
2	Rand	om variables	9
	2.1	Probability theory and set theory	9
	2.2	Discrete random variables	16
	2.3	Continuous random variables	20
	2.4	The conditional probability	26
	2.5	Several random variables and independence	28
	2.6	Conditional expectation	34
3	Basic	distributions	37
	3.1	Discrete random variables	37
	3.2	Continuous random variables	43
	3.3	Derived distributions	47
	3.4	Functions of random variables	51
	3.5	Examples of other distributions	54
	3.6	Summary tables of probability distributions	58
	3.7	Problems	59
4	Correlation		61
	4.1	Generation of correlated Gaussian random variables	61
	4.2	Generation of correlated random variables	67
	4.3	The non-linear transformation method	68

	4.4	Examples of the non-linear transformation method	74
	4.5	Linear combination of independent auxiliary random	
		variables	78
	4.6	Problem	82
5	Inequ	alities	83
	5.1	The minimum (maximum) and infimum (supremum)	83
	5.2	Continuous convex functions	84
	5.3	Inequalities deduced from the Mean Value Theorem	86
	5.4	The Markov and Chebyshev inequalities	87
	5.5	The Hölder, Minkowski and Young inequalities	90
	5.6	The Gauss inequality	92
	5.7	The dominant pole approximation and large deviations	94
6	Limit	alaws	97
	6.1	General theorems from analysis	97
	6.2	Law of Large Numbers	101
	6.3	Central Limit Theorem	103
	6.4	Extremal distributions	104
	Part	II Stochastic processes	113
7	The .	Poisson process	115
	7.1	A stochastic process	115
	7.2	The Poisson process	120
	7.3	Properties of the Poisson process	122
	7.4	The nonhomogeneous Poisson process	129
	7.5	The failure rate function	130
	7.6	Problems	132
8	Rene	wal theory	137
	8.1	Basic notions	138
	8.2	Limit theorems	144
	8.3	The residual waiting time	149
	8.4	The renewal reward process	153
	8.5	Problems	155
9	Discr	rete-time Markov chains	157

	9.2 9.3 9.4	Discrete-time Markov chain The steady-state of a Markov chain Problems	158 168 177
10 Continuous-time Markov chains		nuous-time Markov chains	179
	10.1	Definition	179
	10.2	Properties of continuous-time Markov processes	180
	10.3	Steady-state	187
	10.4	The embedded Markov chain	188
	10.5	The transitions in a continuous-time Markov chain	193
	10.6	Example: the two-state Markov chain in continuous-time	195
	10.7	Time reversibility	196
	10.8	Problems	199
1 1	Appli	cations of Markov chains	201
	11.1	Discrete Markov chains and independent random vari-	
		ables	201
		The general random walk	202
	11.3	Birth and death process	208
	11.4	A random walk on a graph	218
	11.5	Slotted Aloha	219
	11.6	Ranking of webpages	224
	11.7	Problems	228
12	2 Branching processes		229
	12.1	The probability generating function	231
	12.2	The limit W of the scaled random variables W_k	233
	12.3	The Probability of Extinction of a Branching Process	237
	12.4	Asymptotic behavior of W	240
	12.5	A geometric branching processes	243
13	Gener	ral queueing theory	247
	13.1	A queueing system	247
	13.2	The waiting process: Lindley's approach	252
	13.3	The Beneš approach to the unfinished work	256
	13.4	The counting process	263
	13.5	PASTA	266
	13.6	Little's Law	267
14	Queueing models		271

	14.1	The M/M/1 queue	271
		Variants of the M/M/1 queue	276
	14.3	· · · -	283
	14.4	The GI/D/m queue	289
	14.5	The M/D/1/K queue	296
	14.6	The N*D/D/1 queue	300
	14.7	The AMS queue	304
	14.8	The cell loss ratio	309
	14.9	Problems	312
	Part	III Physics of networks	317
15	Gener	al characteristics of graphs	319
	15.1	Introduction	319
	15.2	The number of paths with j hops	321
	15.3	The degree of a node in a graph	322
	15.4	Connectivity and robustness	325
	15.5	Graph metrics	328
	15.6	Random graphs	329
	15.7	The hopcount in a large, sparse graph with unit link weights	340
	15.8	Problems	346
16		Shortest Path Problem	347
	16.1	The shortest path and the link weight structure	348
	16.2	The shortest path tree in K_N with exponential link	
		weights	349
	16.3	The hopcount h_N in the URT	354
	16.4	-	359
	16.5	The flooding time T_N	361
	16.6	The degree of a node in the URT	366
	16.7	The minimum spanning tree	373
	16.8	The proof of the degree Theorem 16.6.1 of the URT	380
	16.9	Problems	385
17	The e	efficiency of multicast	387
	17.1	General results for $g_N(m)$	388
	17.2	The random graph $G_{p}\left(N\right)$	392
	17.3	The k-ary tree	401

17.4	The Chuang-Sirbu law	404
17.5	Stability of a multicast shortest path tree	407
17.6	Proof of (17.16): $g_N(m)$ for random graphs	410
17.7	Proof of Theorem 17.3.1: $g_N(m)$ for k-ary trees	414
17.8	Problem	416
18 The l	nopcount to an anycast group	417
18.1	Introduction	417
18.2	General analysis	419
18.3	The k -ary tree	423
18.4	The uniform recursive tree (URT)	424
18.5	Approximate analysis	431
18.6	The performance measure η in exponentially growing	
	trees	432
Appendix	A Stochastic matrices	435
Appendix	B Algebraic graph theory	471
Appendix	C Solutions of problems	493
Bibliograp	hy	523
Index		529