Contents

Preface to the first edition \hspace{1.5cm} page xi
Preface to the second edition \hspace{1.5cm} xiii
Physical constants and unit conversions \hspace{1.5cm} xv
List of symbols \hspace{1.5cm} xvi

1 \hspace{1cm} Introduction \hspace{1cm} 1

1.1 Evolution of VLSI Device Technology \hspace{1cm} 1
\hspace{1cm} 1.1.1 Historical Perspective \hspace{1cm} 1
\hspace{1cm} 1.1.2 Recent Developments \hspace{1cm} 4
1.2 Modern VLSI Devices \hspace{1cm} 4
\hspace{1cm} 1.2.1 Modern CMOS Transistors \hspace{1cm} 4
\hspace{1cm} 1.2.2 Modern Bipolar Transistors \hspace{1cm} 5
1.3 Scope and Brief Description of the Book \hspace{1cm} 6

2 \hspace{1cm} Basic Device Physics \hspace{1cm} 11

2.1 Electrons and Holes in Silicon \hspace{1cm} 11
\hspace{1cm} 2.1.1 Energy Bands in Silicon \hspace{1cm} 11
\hspace{1cm} 2.1.2 n-Type and p-Type Silicon \hspace{1cm} 17
\hspace{1cm} 2.1.3 Carrier Transport in Silicon \hspace{1cm} 23
\hspace{1cm} 2.1.4 Basic Equations for Device Operation \hspace{1cm} 27
2.2 p-n Junctions \hspace{1cm} 35
\hspace{1cm} 2.2.1 Energy-Band Diagrams for a p–n Diode \hspace{1cm} 35
\hspace{1cm} 2.2.2 Abrupt Junctions \hspace{1cm} 38
\hspace{1cm} 2.2.3 The Diode Equation \hspace{1cm} 46
\hspace{1cm} 2.2.4 Current–Voltage Characteristics \hspace{1cm} 51
\hspace{1cm} 2.2.5 Time-Dependent and Switching Characteristics \hspace{1cm} 64
\hspace{1cm} 2.2.6 Diffusion Capacitance \hspace{1cm} 70
2.3 MOS Capacitors \hspace{1cm} 72
\hspace{1cm} 2.3.1 Surface Potential: Accumulation, Depletion, and Inversion \hspace{1cm} 72
\hspace{1cm} 2.3.2 Electrostatic Potential and Charge Distribution in Silicon \hspace{1cm} 78
\hspace{1cm} 2.3.3 Capacitances in an MOS Structure \hspace{1cm} 85
\hspace{1cm} 2.3.4 Polysilicon-Gate Work Function and Depletion Effects \hspace{1cm} 91
\hspace{1cm} 2.3.5 MOS under Nonequilibrium and Gated Diodes \hspace{1cm} 94
2.3.6 Charge in Silicon Dioxide and at the Silicon–Oxide Interface 98
2.3.7 Effect of Interface Traps and Oxide Charge on Device Characteristics 103
2.4 Metal–Silicon Contacts 108
 2.4.1 Static Characteristics of a Schottky Barrier Diode 108
 2.4.2 Current Transport in a Schottky Barrier Diode 115
 2.4.3 Current–Voltage Characteristics of a Schottky Barrier Diode 115
 2.4.4 Ohmic Contacts 120
2.5 High-Field Effects 122
 2.5.1 Impact Ionization and Avalanche Breakdown 122
 2.5.2 Band-to-Band Tunneling 125
 2.5.3 Tunneling into and through Silicon Dioxide 127
 2.5.4 Injection of Hot Carriers from Silicon into Silicon Dioxide 133
 2.5.5 High-Field Effects in Gated Diodes 135
 2.5.6 Dielectric Breakdown 137
 Exercises 141

3 MOSFET Devices 148
3.1 Long-Channel MOSFETs 148
 3.1.1 Drain-Current Model 149
 3.1.2 MOSFET I–V Characteristics 155
 3.1.3 Subthreshold Characteristics 163
 3.1.4 Substrate Bias and Temperature Dependence of Threshold Voltage 166
 3.1.5 MOSFET Channel Mobility 169
 3.1.6 MOSFET Capacitances and Inversion-Layer Capacitance Effect 172
3.2 Short-Channel MOSFETs 175
 3.2.1 Short-Channel Effect 176
 3.2.2 Velocity Saturation and High-Field Transport 186
 3.2.3 Channel Length Modulation 195
 3.2.4 Source–Drain Series Resistance 196
 3.2.5 MOSFET Degradation and Breakdown at High Fields 196
 Exercises 201

4 CMOS Device Design 204
4.1 MOSFET Scaling 204
 4.1.1 Constant-Field Scaling 204
 4.1.2 Generalized Scaling 207
 4.1.3 Nonscaling Effects 210
4.2 Threshold Voltage 212
 4.2.1 Threshold-Voltage Requirement 213
 4.2.2 Channel Profile Design 217
 4.2.3 Nonuniform Doping 224
 4.2.4 Quantum Effect on Threshold Voltage 234
 4.2.5 Discrete Dopant Effects on Threshold Voltage 239
4.3 MOSFET Channel Length
 4.3.1 Various Definitions of Channel Length 242
 4.3.2 Extraction of the Effective Channel Length 244
 4.3.3 Physical Meaning of Effective Channel Length 248
 4.3.4 Extraction of Channel Length by C–V Measurements 252
 Exercises 254

5 CMOS Performance Factors 256
5.1 Basic CMOS Circuit Elements 256
 5.1.1 CMOS Inverters 256
 5.1.2 CMOS NAND and NOR Gates 266
 5.1.3 Inverter and NAND Layouts 270
5.2 Parasitic Elements 273
 5.2.1 Source–Drain Resistance 274
 5.2.2 Parasitic Capacitances 277
 5.2.3 Gate Resistance 280
 5.2.4 Interconnect R and C 283
5.3 Sensitivity of CMOS Delay to Device Parameters 289
 5.3.1 Propagation Delay and Delay Equation 289
 5.3.2 Delay Sensitivity to Channel Width, Length, and Gate Oxide Thickness 296
 5.3.3 Sensitivity of Delay to Power-Supply Voltage and Threshold Voltage 299
 5.3.4 Sensitivity of Delay to Parasitic Resistance and Capacitance 301
 5.3.5 Delay of Two-Way NAND and Body Effect 304
5.4 Performance Factors of Advanced CMOS Devices 307
 5.4.1 MOSFETs in RF Circuits 308
 5.4.2 Effect of Transport Parameters on CMOS Performance 311
 5.4.3 Low-Temperature CMOS 312
 Exercises 315

6 Bipolar Devices 318
6.1 n–p–n Transistors 318
 6.1.1 Basic Operation of a Bipolar Transistor 322
 6.1.2 Modifying the Simple Diode Theory for Describing Bipolar Transistors 322
6.2 Ideal Current–Voltage Characteristics 327
 6.2.1 Collector Current 329
 6.2.2 Base Current 330
 6.2.3 Current Gains 334
 6.2.4 Ideal I_C–V_{CE} Characteristics 336
6.3 Characteristics of a Typical n–p–n Transistor 337
 6.3.1 Effect of Emitter and Base Series Resistances 338
 6.3.2 Effect of Base–Collector Voltage on Collector Current 340
 6.3.3 Collector Current Falloff at High Currents 343
 6.3.4 Nonideal Base Current at Low Currents 347
6.4 Bipolar Device Models for Circuit and Time-Dependent Analyses

6.4.1 Basic dc Model

6.4.2 Basic ac Model

6.4.3 Small-Signal Equivalent-Circuit Model

6.4.4 Emitter Diffusion Capacitance

6.4.5 Charge-Control Analysis

6.5 Breakdown Voltages

6.5.1 Common-Base Current Gain in the Presence of Base–Collector Junction Avalanche

6.5.2 Saturation Currents in a Transistor

6.5.3 Relation Between BV_{CEO} and BV_{CBO}

Exercises

7 Bipolar Device Design

7.1 Design of the Emitter Region

7.1.1 Diffused or Implanted-and-Diffused Emitter

7.1.2 Polysilicon Emitter

7.2 Design of the Base Region

7.2.1 Relationship between Base Sheet Resistivity and Collector Current Density

7.2.2 Intrinsic-Base Dopant Distribution

7.2.3 Electric Field in the Quasineutral Intrinsic Base

7.2.4 Base Transit Time

7.3 Design of the Collector Region

7.3.1 Collector Design When There Is Negligible Base Widening

7.3.2 Collector Design When There Is Appreciable Base Widening

7.4 SiGe-Base Bipolar Transistors

7.4.1 Transistors Having a Simple Linearly Graded Base Bandgap

7.4.2 Base Current When Ge Is Present in the Emitter

7.4.3 Transistors Having a Trapezoidal Ge Distribution in the Base

7.4.4 Transistors Having a Constant Ge Distribution in the Base

7.4.5 Effect of Emitter Depth Variation on Device Characteristics

7.4.6 Some Optimal Ge Profiles

7.4.7 Base-Width Modulation by V_{BE}

7.4.8 Reverse-Mode $I–V$ Characteristics

7.4.9 Heterojunction Nature of a SiGe-Base Bipolar Transistor

7.5 Modern Bipolar Transistor Structures

7.5.1 Deep-Trench Isolation

7.5.2 Polysilicon Emitter

7.5.3 Self-Aligned Polysilicon Base Contact

7.5.4 Pedestal Collector

7.5.5 SiGe-Base

Exercises
Bipolar Performance Factors

8.1 Figures of Merit of a Bipolar Transistor
 8.1.1 Cutoff Frequency
 8.1.2 Maximum Oscillation Frequency
 8.1.3 Ring Oscillator and Gate Delay
8.2 Digital Bipolar Circuits
 8.2.1 Delay Components of a Logic Gate
 8.2.2 Device Structure and Layout for Digital Circuits
8.3 Bipolar Device Optimization for Digital Circuits
 8.3.1 Design Points for a Digital Circuit
 8.3.2 Device Optimization When There Is Significant
 Base Widening
 8.3.3 Device Optimization When There Is Negligible
 Base Widening
 8.3.4 Device Optimization for Small Power–Delay Product
 8.3.5 Bipolar Device Optimization from Some Data Analyses
8.4 Bipolar Device Scaling for ECL Circuits
 8.4.1 Device Scaling Rules
 8.4.2 Limits in Bipolar Device Scaling for ECL Circuits
8.5 Bipolar Device Optimization and Scaling for RF and Analog Circuits
 8.5.1 The Single-Transistor Amplifier
 8.5.2 Optimizing the Individual Parameters
 8.5.3 Technology for RF and Analog Bipolar Devices
 8.5.4 Limits in Scaling Bipolar Transistors for RF and
 Analog Applications
8.6 Comparing a SiGe-Base Bipolar Transistor with a GaAs HBT
 Exercises

Memory Devices

9.1 Static Random-Access Memory
 9.1.1 CMOS SRAM Cell
 9.1.2 Other Bistable MOSFET SRAM Cells
 9.1.3 Bipolar SRAM Cell
9.2 Dynamic Random-Access Memory
 9.2.1 Basic DRAM Cell and Its Operation
 9.2.2 Device Design and Scaling Considerations for a DRAM Cell
9.3 Nonvolatile Memory
 9.3.1 MOSFET Nonvolatile Memory Devices
 9.3.2 Flash Memory Arrays
 9.3.3 Floating-Gate Nonvolatile Memory Cells
 9.3.4 Nonvolatile Memory Cells with Charge Stored in Insulator
 Exercise
Silicon-on-Insulator Devices

10.1 SOI CMOS
 10.1.1 Partially Depleted SOI MOSFETs
 10.1.2 Fully Depleted SOI MOSFETs

10.2 Thin-Silicon SOI Bipolar
 10.2.1 Fully Depleted Collector Mode
 10.2.2 Partially Depleted Collector Mode
 10.2.3 Accumulation Collector Mode
 10.2.4 Discussion

10.3 Double-Gate MOSFETs
 10.3.1 An Analytic Drain Current Model for Symmetric DG MOSFETs
 10.3.2 The Scale Length of Double-Gate MOSFETs
 10.3.3 Fabrication Requirements and Challenges of DG MOSFETs
 10.3.4 Multiple-Gate MOSFETs
 Exercise

Appendix 1 CMOS Process Flow
Appendix 2 Outline of a Process for Fabricating Modern n–p–n Bipolar Transistors
Appendix 3 Einstein Relations
Appendix 4 Spatial Variation of Quasi-Fermi Potentials
Appendix 5 Generation and Recombination Processes and Space-Charge-Region Current
Appendix 6 Diffusion Capacitance of a p–n Diode
Appendix 7 Image-Force-Induced Barrier Lowering
Appendix 8 Electron-Initiated and Hole-Initiated Avalanche Breakdown
Appendix 9 An Analytical Solution for the Short-Channel Effect in Subthreshold
Appendix 10 Generalized MOSFET Scale Length Model
Appendix 11 Drain Current Model of a Ballistic MOSFET
Appendix 12 Quantum-Mechanical Solution in Weak Inversion
Appendix 13 Power Gain of a Two-Port Network
Appendix 14 Unity-Gain Frequencies of a MOSFET Transistor
Appendix 15 Determination of Emitter and Base Series Resistances
Appendix 16 Intrinsic-Base Resistance
Appendix 17 Energy-Band Diagram of a Si–SiGe n–p Diode
Appendix 18 f_T and f_{max} of a Bipolar Transistor

References
Index