CHAPTER 1 THE STRUCTURE OF METALS 1

1.1 The Structure of Metals, 1 1.2 Unit Cells, 2 1.3 The Body-Centered Cubic Structure (BCC), 3 1.4 Coordination Number of the Body-Centered Cubic Lattice, 4 1.5 The Face-Centered Cubic Lattice (FCC), 4 1.6 The Unit Cell of the Hexagonal Closed-Packed (HCP) Lattice, 5 1.7 Comparison of the Face-Centered Cubic and Close-Packed Hexagonal Structures, 6 1.8 Coordination Number of the Systems of Closest Packing, 7 1.9 Anisotropy, 7 1.10 Textures or Preferred Orientations, 8 1.11 Miller Indices, 9 1.12 Crystal Structures of the Metallic Elements, 14 1.13 The Stereographic Projection, 15 1.14 Directions that Lie in a Plane, 16 1.15 Planes of a Zone, 17 1.16 The Wulff Net, 17 1.17 Standard Projections, 21 1.18 The Standard Stereographic Triangle for Cubic Crystals, 24 Problems, 26 References, 28

CHAPTER 2 CHARACTERIZATION TECHNIQUES 29

2.1 The Bragg Law, 30 2.2 Laue Techniques, 33 2.3 The Rotating-Crystal Method, 35 2.4 The Debye-Scherrer or Powder Method, 36 2.5 The X-Ray Diffractometer, 39 2.6 The Transmission Electron Microscope, 40 2.7 Interactions Between the Electrons in an Electron Beam and a Metallic Specimen 46 2.8 Elastic Scattering, 46 2.9 Inelastic Scattering, 46 2.10 Electron Spectrum, 48 2.11 The Scanning Electron Microscope, 48 2.12 Topographic Contrast, 50 2.13 The Picture Element Size, 53 2.14 The Depth of Focus, 54 2.15 Microanalysis of Specimens, 55 2.16 Electron Probe X-Ray Microanalysis, 55 2.17 The Characteristic X-Rays, 56 2.18 Auger* Electron Spectroscopy (AES), 58 2.19 The Scanning Transmission Electron Microscope (STEM), 60 Problems, 60 References 61

CHAPTER 3 CRYSTAL BINDING 62

3.1 The Internal Energy of a Crystal, 62 3.2 Ionic Crystals, 62 3.3 The Born Theory of Ionic Crystals, 63 3.4 Van Der Waals Crystals, 68 3.5 Dipoles, 68 3.6 Inert Cases, 69 3.7 Induced Dipoles, 70 3.8 The Lattice Energy of an Inert-Gas Solid, 71 3.9 The Debye Frequency, 72 3.10 The Zero-Point Energy, 73 3.11 Dipole-Quadrupole and Quadrupole-Quadrupole Terms, 75 3.12 Molecular Crystals, 75 3.13 Refinements to the Born Theory of Ionic Crystals, 75 3.14 Covalent and Metallic Bonding, 76 Problems 80 References, 81
CHAPTER 4 INTRODUCTION TO DISLOCATIONS

4.1 The Discrepancy Between the Theoretical and Observed Yield Stresses of Crystals, 82 4.2 Dislocations, 85 4.3 The Burgers Vector, 93 4.4 Vector Notation for Dislocations, 95 4.5 Dislocations in the Face-Centered Cubic Lattice, 96 4.6 Intrinsic and Extrinsic Stacking Faults in Face-Centered Cubic Metals, 101 4.7 Extended Dislocations in Hexagonal Metals, 102 4.8 Climb of Edge Dislocations, 102 4.9 Dislocation Intersections, 104 4.10 The Stress Field of a Screw Dislocation, 107 4.11 The Stress Field of an Edge Dislocation, 109 4.12 The Force on a Dislocation, 111 4.13 The Strain Energy of a Screw Dislocation, 114 4.14 The Strain Energy of an Edge Dislocation, 115 Problems, 116 References, 118

CHAPTER 5 DISLOCATIONS AND PLASTIC DEFORMATION

5.1 The Frank-Read Source, 119 5.2 Nucleation of Dislocations, 120 5.3 Bend Gliding, 123 5.4 Rotational Slip, 125 5.5 Slip Planes and Slip Directions, 127 5.6 Slip Systems, 129 5.7 Critical Resolved Shear Stress, 129 5.8 Slip on Equivalent Slip Systems, 133 5.9 The Dislocation Density, 133 5.10 Slip Systems in Different Crystal Forms, 133 5.11 Cross-Slip, 138 5.12 Slip Bands, 141 5.13 Double Cross-Slip, 141 5.14 Extended Dislocations and Cross-Slip, 143 5.15 Crystal Structure Rotation During Tensile and Compressive Deformation, 144 5.16 The Notation for the Slip Systems in the Deformation of FCC Crystals, 147 5.17 Work Hardening, 149 5.18 Considère's Criterion, 150 5.19 The Relation Between Dislocation Density and the Stress, 151 5.20 Taylor's Relation, 153 5.21 The Orowan Equation, 153 Problems, 154 References, 157

CHAPTER 6 ELEMENTS OF GRAIN BOUNDARIES

CHAPTER 7 VACANCIES

7.1 Thermal Behavior of Metals, 194 7.2 Internal Energy, 195 7.3 Entropy, 196 7.4 Spontaneous Reactions, 196 7.5 Gibbs Free Energy, 197
7.6 Statistical Mechanical Definition of Entropy, 199 7.7 Vacancies, 203
7.8 Vacancy Motion, 209 7.9 Interstitial Atoms and Divacancies, 211 Problems, 214 References, 215

CHAPTER 8 ANNEALING

8.1 Stored Energy of Cold Work, 216 8.2 The Relationship of Free Energy to Strain Energy, 217 8.3 The Release of Stored Energy, 218 8.4 Recovery, 220
8.5 Recovery in Single Crystals, 221 8.6 Polygonization, 223 8.7 Dislocation Movements in Polygonization, 226 8.8 Recovery Processes at High and Low Temperatures, 229 8.9 Recrystallization, 230 8.10 The Effect of Time and Temperature on Recrystallization, 230 8.11 Recrystallization Temperature, 232
8.12 The Effect of Strain on Recrystallization, 233 8.13 The Rate of Nucleation and the Rate of Nucleus Growth, 234 8.14 Formation of Nuclei, 235
8.15 Driving Force for Recrystallization, 237 8.16 The Recrystallized Grain Size 237 8.17 Other Variables in Recrystallization, 239 8.18 Purity of the Metal, 239 8.19 Initial Grain Size, 240 8.20 Grain Growth, 240

CHAPTER 9 SOLID SOLUTIONS

9.5 Substitutional Solid Solutions and the Hume-Rothery Rules, 267
9.6 Interaction of Dislocations and Solute Atoms, 267 9.7 Dislocation Atmospheres, 268 9.8 The Formation of a Dislocation Atmosphere, 269

CHAPTER 10 PHASES

10.1 Basic Definitions, 287 10.2 The Physical Nature of Phase Mixtures, 289
10.10 Ternary Systems, 309 Problems, 310 References, 311
CHAPTER 11 BINARY PHASE DIAGRAMS 312

CHAPTER 12 DIFFUSION IN SUBSTITUTIONAL SOLID SOLUTIONS 348

CHAPTER 13 INTERSTITIAL DIFFUSION 389

CHAPTER 14 SOLIDIFICATION OF METALS 408

CHAPTER 15 NUCLEATION AND GROWTH KINETICS 463

15.1 Nucleation of a Liquid from the Vapor, 463 15.2 The Becker-Döring Theory, 471 15.3 Freezing, 473 15.4 Solid-State Reactions, 475
15.5 Heterogeneous Nucleation, 478 15.6 Growth Kinetics, 481 15.7 Diffusion Controlled Growth, 484 15.8 Interference of Growing Precipitate Particles, 488 15.9 Interface Controlled Growth, 488 15.10 Transformations That Occur on Heating, 492 15.11 Dissolution of a Precipitate, 493
Problems, 495 References, 497

CHAPTER 16 PRECIPITATION HARDENING 498

16.1 The Significance of the Solvus Curve, 499 16.2 The Solution Treatment, 500
16.3 The Aging Treatment, 500 16.4 Development of Precipitates, 503
16.5 Aging of Al-Cu Alloys at Temperatures Above 100°C (373 K), 506
16.6 Precipitation Sequences in Other Aluminum Alloys, 509 16.7 Homogeneous Versus Heterogeneous Nucleation of Precipitates, 511
16.8 Interphase Precipitation, 512 16.9 Theories of Hardening, 515
16.10 Additional Factors in Precipitation Hardening, 516
Problems, 518 References, 519

CHAPTER 17 DEFORMATION TWINNING AND MARTENSITE REACTIONS 521

17.1 Deformation Twinning, 521 17.2 Formal Crystallographic Theory of Twinning, 524 17.3 Twin Boundaries, 530 17.4 Twin Growth, 531
17.5 Accommodation of the Twinning Shear, 533 17.6 The Significance of Twinning in Plastic Deformation, 534 17.7 The Effect of Twinning on Face-Centered Cubic Stress-Strain Curves, 535 17.8 Martensite, 537 17.9 The Bain Distortion, 538 17.10 The Martensite Transformation in an Indium-Thallium Alloy, 540 17.11 Reversibility of the Martensite Transformation, 541
17.16 Isothermal Formation of Martensite, 551 17.17 Stabilization, 551
17.18 Nucleation of Martensite Plates, 552 17.19 Growth of Martensite Plates, 553 17.20 The Effect of Stress, 553 17.21 The Effect of Plastic Deformation, 554 17.22 Thermoelastic Martensite Transformations, 554
17.23 Elastic Deformation of Thermoelastic Alloys, 556 17.24 Stress-Induced Martensite (SIM), 556 17.25 The Shape-Memory Effect, 557
Problems, 559 References, 560

CHAPTER 18 THE IRON-CARBON ALLOY SYSTEM 562

18.1 The Iron-Carbon Diagram, 562 18.2 The Proeutectoid Transformations of Austenite, 565 18.3 The Transformation of Austenite to Pearlite, 566 18.4 The Growth of Pearlite, 572 18.5 The Effect of Temperature on the Pearlite

CHAPTER 19 THE HARDENING OF STEEL

CHAPTER 20 SELECTED NONFERROUS ALLOY SYSTEMS

CHAPTER 21 FAILURE OF METALS

Microstructure on Fatigue, 721 **21.20** Low-Cycle Fatigue, 721 **21.21** The Coffin-Manson Equation, 726 **21.22** Certain Practical Aspects of Fatigue, 727 Problems, 728 References, 729

APPENDICES

A Angles Between Crystallographic Planes in the Cubic System*, 731

B Angles Between Crystallographic Planes for Hexagonal Elements*, 733

C Indices of the Reflecting Planes for Cubic Structures, 734

D Conversion Factors and Constants, 734

E Twinning Elements of Several of the More Important Twinning Modes, 735

F Selected Values of Intrinsic Stacking-Fault Energy γ_p, Twin-Boundary Energy γ_T, Grain-Boundary Energy γ_G, and Crystal-Vapor Surface Energy γ for Various Materials in ergs/cm2*, 735

LIST OF IMPORTANT SYMBOLS

LIST OF GREEK LETTER SYMBOLS

INDEX