e

SECOND EDITION

CLIMATE

The Science, Impacts and Solutions

A. BARRIE PITTOCK

CONTENTS

	Foreword	ix
	Acknowledgements	xi
	Introduction	xiii
1	Climate change matters	1
	Turning up the heat	2
	Why is the present rapid warming happening?	7
	The importance of delayed climate responses	10
	Observed impacts	12
	Trends in human vulnerability	15
	Projections of future climate change	16
	Facing the challenge	17
	Conclusion	18
	Endnotes	19
2	Learning from the past	23
	Proxy data: clues from the past	24
	The record of the ice ages	26
	The causes of past climate change	27
	Variations in the Earth's orbit	28
	Role of greenhouse gases in amplifying climate changes	29
	Variations in solar output	30
	Volcanoes, cosmic collisions and aerosols	31
	Rapid climate changes in the past	32
	The last 10 000 years	35
	Conclusions from the past record	37
	Endnotes	39
3	Projecting the future	43
	The need for, and nature of, foresight	43
	Predictions, scenarios and projections	44

	The emissions scenarios used by the IPCC	45
	Projections of socio-economic futures	49
	Forecasting the weather	51
	Why climate projections are different	52
	How good are climate models?	53
	The state of climate projections	56
	Endnotes	57
4	Uncertainty is inevitable, but risk is certain	59
	Despite uncertainties, decisions have to be made	59
	Uncertainty in climate change projections	60
	From polarisation to probability and risk	63
	Estimating risk	67
	Uncertainty and the role of sceptics	69
	Application of the 'precautionary principle'	73
	Endnotes	74
5	What climate changes are likely?	77
	Projected climate changes	78
	Surface warming	80
	Regional warmings	82
	Precipitation and evaporation	82
	Extreme events	84
	Sea-level rise	87
	Thresholds and abrupt or irreversible changes	93
	Scenarios in a nutshell	97
	Endnotes	99
6	Impacts: why be concerned?	107
	Climate change impacts – reasons for concern	109
	Thresholds and abrupt changes	110
	Risks to unique and threatened systems	111
	Risks from extreme climate events	115
	Distribution of impacts	118
	Aggregate impacts	121

	Waking the sleeping giants	122
	Effects of a breakdown in the ocean circulation	122
	Rapid sea-level rise from melting ice sheets	124
	Runaway carbon dynamics	125
	Security implications	126
	Stabilisation of greenhouse gas concentrations	126
	Growing reasons for concern	128
	Endnotes	129
7	Adaptation: living with climate change	133
	Adaptation concepts and strategies	133
	Costs and benefits of adaptation	136
	Implementation	137
	Effects of different rates of climatic change	140
	Equity issues in adaptation	141
	Enhancing adaptive capacity	144
	Endnotes	145
8	Mitigation: limiting climate change	149
	Why mitigation is necessary	149
	Targets: how much mitigation is needed?	150
	Where we are now	157
	How difficult is mitigation?	159
	The looming peak in oil production	165
	Mitigation options	167
	Increased energy efficiency	167
	Changes in infrastructure and behaviour	170
	Fuel substitution	172
	Nuclear power	174
	Hydropower	176
	Solar energy	177
	Wind power	180
	Biomass energy	182
	Tidal and wave energy	186

	Geothermal power	187
	The hydrogen economy	188
	Carbon capture and sequestration	190
	Land-based carbon sinks	194
	Geoengineering possibilities	197
	Technological innovation: attitude is vital	201
	The road to effective mitigation	202
	Endnotes	206
9.	Climate change in context	223
	Surface air pollution and climate change	225
	Stratospheric ozone depletion	225
	Land-use change, biodiversity, agriculture and forestry	226
	Land degradation and desertification	227
	Freshwater supply	227
	Population growth	229
	Synergies and trade-offs	231
	Integration, sustainable development and equity	232
	Postscript: connections between economic and climate crises	234
	Endnotes	236
10	The politics of greenhouse	239
	Is the science credible?	239
	What about the uncertainty?	241
	How realistic are the scenarios?	242
	Choosing global and local emissions targets	243
	How urgently do we need to act?	246
	How much will reducing emissions cost?	247
	Meeting targets most efficiently	249
	International equity: what is fair?	254
	The importance of equity within countries	260
	Equity between generations	261
	The role of governments and NGOs	262
	What role should business take?	264

The role of state and local governments	268
So what are the politics of greenhouse?	270
Endnotes	271
11 International concern and national interests	277
A brief history	277
The Kyoto Protocol	280
National interests and climate change	282
African nations	283
Australia and New Zealand	284
China	289
European Union	291
India, Pakistan and Bangladesh	293
Latin America	295
The Russian Federation	296
Small Island States	298
United States of America	300
The common interest in global solutions	306
Endnotes	307
12 Accepting the challenge	317
Looking beyond the Kyoto Protocol	321
Addressing the key issues	324
Endnotes	326
Glossary (with acronyms)	
Index	337