

Introduction to

FACTS Controllers

Theory, Modeling, and Applications

Kalyan K. Sen AND Mey Ling Sen

CONTENTS

Foreword				xiii	
Preface					
Αc	Acknowledgments				
N	omen	clature		xix	
1.	Арр	lication	s of FACTS Controllers	1	
2.	Pow	er Flow	Control Concepts	13	
	2.1	Theory		13	
		2.1.1	Series-Connected Compensating Voltage	19	
			2.1.1.1 Power at the Sending End	20	
			2.1.1.2 Power at the Receiving End	24	
			2.1.1.3 Power at the Modified Sending End	29	
			2.1.1.4 Exchanged Power by the Series-Connected	35	
			Compensating Voltage		
		2.1.2	Shunt-Connected Compensating Voltage	43	
			2.1.2.1 Power at the Modified Sending End	43	
			2.1.2.2 Power at the Receiving End	45	
		2.1.3	Comparison between Series-Connected and Shunt-Connected	46	
Compensating Voltages					
	2.2		nentation of Power Flow Control Concepts	48	
		2.2.1	Voltage Regulation	48	
			2.2.1.1 Direct Method	48	
			2.2.1.2 Indirect Method	50	
		2.2.2	Phase Angle Regulation	54	
		2.2.3	Series Reactance Regulation	56	
			2.2.3.1 Direct Method	56	
			2.2.3.2 Indirect Method	56	

viii CONTENTS

		2.2.4	Independent Control of Active and Reactive Power Flows	58	
			2.2.4.1 Unified Power Flow Controller	60	
			2.2.4.2 Sen Transformer	62	
	2.3	Interlin	ne Power Flow Concept	65	
		2.3.1	Back-To-Back SSSC	66	
		2.3.2	Multiline Sen Transformer	68	
		2.3.3	Back-to-Back STATCOM	74	
		2.3.4	Generalized Power Flow Controller	76	
3.	Mod		rinciples	79	
	3.1	The M	odeling in EMTP	79	
		3.1.1	Network Model	81	
	3.2	Vector	Phase-Locked Loop (VPLL)	87	
	3.3		nission Line Steady-State Resistance Calculator	88	
	3.4	Simula	ation of an Independent PFC in a Single Line Application	89	
4.	Trar		er-Based FACTS Controllers	95	
	4.1	Voltag	ge Regulating Transformer (VRT)	95	
		4.1.1	Autotransformer	97	
		4.1.2	Two-Winding Transformer	101	
	4.2	Phase .	Angle Regulator (PAR)	102	
5.	Med		lly Switched FACTS Controllers	107	
	5.1	Shunt	Compensation	107	
		5.1.1	Mechanically Switched Capacitor (MSC)	107	
		5.1.2	Mechanically Switched Reactor (MSR)	110	
	5.2		Compensation	113	
		5.2.1	Mechanically Switched Reactor (MSR)	113	
		5.2.2	Mechanically Switched Capacitor (MSC) with a Reactor	115	
6.	Vol	oltage-Sourced Converter (VSC)			
	6.1		Iodeling an Ideal VSC		
	6.2		C-to-AC VSC		
		6.2.1	Generation of a Square Wave Voltage with a Two-Level Pole	119	
			6.2.1.1 Modeling a Single-Phase VSC and Simulation Results	122	
		6.2.2	Six-Pulse VSC with Two-Level Poles	123	
			6.2.2.1 Modeling a Six-Pulse VSC with Two-Level Poles	134	
		6.2.3	12-Pulse HN-VSC with Two-Level Poles	135	
		0.2.3	6.2.3.1 Graphical Presentation of the Cancellation Technique of the Fifth and the Seventh Harmonic Components	146	

CONTENTS

			6.2.3.2	Modeling a 12-Pulse HN-VSC with Two-Level Poles	149
		6.2.4	24-Pulse	HN-VSC with Two-Level Poles	150
		0.2.4	6.2.4.1	Modeling a 24-Pulse HN-VSC with Two-Level Poles	160
		6.2.5	24-Pulse	QHN-VSC with Two-Level Poles	162
		V.2.0	6.2.5.1	Modeling a 24-Pulse QHN-VSC with Two-Level Poles	169
		6.2.6	48-Pulse	QHN-VSC with Two-Level Poles	170
			6.2.6.1	Modeling of a 48-Pulse QHN-VSC with Two-level Poles	180
		6.2.7	Three-Le		182
		6.2.8		e VSC with Three-Level Poles	185
		6.2.9	12-Pulse	HN-VSC with Three-Level Poles	194
			6.2.9.1	Modeling a 12-Pulse HN-VSC with Three-Level Poles	196
		6.2.10		QHN-VSC with Three-Level Poles	196
				Modeling a 24-Pulse QHN-VSC with Three-Level Poles	199
		6.2.11		e Configuration for a QHN-VSC	200
				Interphase Transformer (IPT)	201
				24-Pulse QHN-VSC with IPTs	202
			6.2.11.3	Poles and IPTs	205
		6.2.12		le Pole Circuits	205
		6.2.13		rations for a HN-VSC	207
				AC VSC Operated with PWM Technique	209
	6.3	Discus	sion		211
7.	Two	-Level	Pole Des	ign	213
	7.1	A Thre	e-Phase, S	Six-Pulse VSC with Two-Level Poles	214
	7.2		sis of a Po		217
		7.2.1	Device (Characteristics	218
		7.2.2	Mathem	atical Model	220
		7.2.3	Analysis	s of the Model	222
			7.2.3.1	Mode 1 of Operation	223
			7.2.3.2	Mode 2 of Operation	230
		7.2.4	Results		242
8.	VSC	-Based	I FACTS	Controllers	245
	8.1	Shunt	Compensa		251
		8.1.1	Shunt R	eactive Current Injection	251

	8.1.2		nected Compensating voltage Source Benniu	232
		an Impedan		254
	8.1.3		nected Compensating Voltage Behind a	234
		Coupling T		255
	8.1.4		hronous Compensator (STATCOM)	
			Control of STATCOM	257
			Modeling of STATCOM in EMTP and	258
			Simulation Results	261
8.2		Compensatio		261
	8.2.1		hronous Series Compensator (SSSC)	271
	8.2.2	Control of		271
	8.2.3		of SSSC in EMTP and Simulation Results	273
	8.2.4		ersal of Power Flow	276
			Reactance Control Method	277
			Voltage Control Method	283
8.3		_	pensation Using a Unified Power Flow	290
		ller (UPFC)		
	8.3.1	Control of		293
	8.3.2	_	of UPFC in EMTP and Simulation Results	294
	8.3.3			296
	8.3.4	Protection	of UPFC	302
9. Ser	n Transf	ormer		307
9.1		g Solutions		309
,,,	9.1.1	Voltage Re	egulation	309
	9.1.2		le Regulation	311
9.2		d Solution		312
,	9.2.1		w Voltage Regulator	316
	9.2.2		ndependent PFC	319
	9.2.3	Control of		321
	y		Impedance Emulation	323
			Resistance Emulation	324
			Reactance Emulation	324
			Closed Loop Power Flow Control	325
			Open Loop Power Flow Control	325
	9.2.4			327
	9.2.5		ngle Operation of ST	329
	9.2.6		LTCs with Lower Current Rating	336
	9.2.7		LTCs with Lower Voltage and Current Ratings	343
9.3			ng the VRT, PAR, UPFC, and ST	344
,,,	9.3.1		w Enhancement	344
	9.3.2	Speed of (346
	9.3.3	Losses	- F	348
	9.3.4	Switch Ra	ting	348
	9.3.5		Circuit Design	348
	7.00		- ···· - · · · 	

	9.3.6 Optimization of Transformer Rating	349
	9.3.7 Harmonic Injection into the Power System Network	351
	9.3.8 Operation During Line Faults	351
9.4	Multiline Sen Transformer	352
9.4	9.4.1 Basic Differences between the MST and BTB-SSSC	356
9.5	Flexible Operation of the ST	357
9.5 9.6	ST with Shunt-Connected Compensating Voltages	358
9.0 9.7	Limited Angle Operation of the ST with Shunt-Connected	362
9.7	Compensating Voltages	
9.8	MST with Shunt-Connected Compensating Voltages	369
9.9	Generalized Sen Transformer	371
9.10	Summary	372
7.10	,	
4 DDENI	DIX A. Miscellaneous	373
AFFEIW A.I.	Three-Phase Balanced Voltage, Current, and Power	373
	Symmetrical Components	377
A.II.	Separation of Positive, Negative, and Zero Sequence Components in	383
A.III.	a Multiple Frequency Composite Variable	
A 137	Three-Phase Unbalanced Voltage, Current, and Power	387
A.IV.	d-q Transformation	392
A.V.	A.V.1. Conversion of a Variable Containing Positive,	396
	Negative, and Zero Sequence Components into d-q Frame	370
	A.V.2. Calculation of Instantaneous Power into d-q Frame	399
	A.V.3. Calculation of Instantaneous Power into d-q Frame for a	400
	3-phase, 3-wire System	100
A \$77	Fourier Analysis	405
A.VI. A.VII.	Adams–Bashforth Numerical Integration Formula	410
A. V II.	Adams—Basinorui Numericai integration i omitua	110
ADDEN	DIX B. Power Flow Control Equations in a Lossy	413
APPEN	Transmission Line	7.0
B.I.	Power Flow Equations at the Sending End of an Uncompensated	415
Б.1.	Transmission Line	
B.II.	Power Flow Equations at the Receiving End of an Uncompensated	418
Б.Ц.	Transmission Line	• • • •
B.III.	Verification of Power Flow Equations at the Sending and Receiving	421
D.III.	Ends of an Uncompensated Transmission Line	.21
B.IV.	Natural Power Flow Equations in an Uncompensated Transmission	422
D.1 V.	<u>-</u>	122
D W	Line Mart Immertant Boyyer Flow Control Parameters	427
B.V.	Most Important Power Flow Control Parameters D. V. 1. Madifician Transmission Line Waltage with a Shunt-	431
	B.V.1. Modifying Transmission Line Voltage with a Shunt- Connected Compensating Voltage	7.5.1
	B.V.2. Modifying Transmission Line Voltage with a Series-	431
		-t⊃1
D 371	Connected Compensating Voltage	435
B.VI.	Power Flow at the Sending End	700

xii		CONTENTS
B.VII.	Power Flow at the Receiving End	438
B.VIII.	Power Flow at the Modified Sending End	441
B.IX.	Exchanged Power by the Compensating Voltage	445

ADDENIDIY C EMITD Ciles

ALILIA	40	
Bibliog	50!	
I.	Books	50:
II.	General	50:
III.	STATCOM	510
IV.	SSSC	512
V.	UPFC	513
VI.	IPFC	510

Index **About the Authors**