Handbook of Spallation Research

Theory, Experiments and Applications

Contents

Preface XVII

Part I	Principles 1
1	The Spallation Process 3
1.1	Historic Remarks and Definitions 3
1.2	Spallation by Cosmic Ray-Induced Reactions 5
1.3	Physics of the Spallation Process 12
1.3.1	Introduction 12
1.3.2	The Fission Process 15
1.3.3	Spallation and Fission 17
1.3.4	The Logical Scheme of Spallation Reactions 21
1.3.5	Particle Interaction Mechanisms 23
1.3.5.1	The Elementary Forces and Particles 23
1.3.5.2	Feynman Diagrams 26
1.3.5.3	Resonance Decay, Pion Absorption, and Pion Charge-Exchange 27
1.3.5.4	Kinetic Energy, Total Energy, and Momentum 30
1.3.5.5	Cross Sections, Absorption Length, Collision Length, and Mean Free
	Path 31
1.3.6	Electromagnetic and Atomic Interactions 33
1.3.6.1	Energy Loss of Heavy Particles by Ionization and Excitation – the
	Bethe or Bethe–Bloch Formula 33
1.3.6.2	Coulomb Scattering 37
1.3.6.3	Bremsstrahlung 39
1.3.6.4	Energy Loss by Direct Pair Production and by Photonuclear
	Interaction 40
1.3.6.5	Total Energy Loss 40
1.3.7	High-Energy Hadronic Cascades and Nuclear Interactions 41
1.3.7.1	Qualitative Features of Hadron–Nucleus Collisions 41
1.3.7.2	Characteristics of Hadron Cascades in Thick Targets 42
1.3.7.3	Spatial Propagation of Hadron Cascades and Particle Production 43
1.3.7.4	Total Cross Sections in Nucleon–Nucleus Collisions 44

VIII	Contents	
	1.3.7.5	Total Reaction Cross Sections in Nucleus–Nucleus Reactions 49
	1.3.7.6	Differential Cross Sections 54
	1.3.8	Hadronic–Electromagnetic Cascade Coupling 57
	2	The Intranuclear Cascade Models 63
	2.1	Introduction 63
	2.2	The BERTINI Approach 64
	2.2.1	Features of the BERTINI Nuclear Model 64
	2.2.2	The Nuclear Model 65
	2.2.2.1	Nucleon Density Distribution Inside the Nucleus 65
	2.2.2.2	Momentum Distribution of Nucleons Inside the Nucleus 68
	2.2.2.3	Potential Energy Distribution Inside the Nucleus 70
	2.2.2.4	Application of the Pauli Exclusion Principle 73
	2.2.3	The Cross-Section Data 74
	2.2.3.1	Nucleon-Nucleon Cross-Section Data 76
	2.2.3.2	Pion Production and Pion Nucleon Reactions 77
	2.2.4	Method of Computation 85
	2.2.5	Assumptions, Limits, and Constraints on the Energy and Application
		Regime 87
	2.3	The Cugnon INCL Approach 88
	2.3.1	Features of the Model 90
	2.3.1.1	Participants and Spectators 90
	2.3.1.2	Nuclear Surface 91
	2.3.1.3	Meson-Nucleon Cross Sections 92
	2.3.1.4	Elastic Nucleon–Nucleon Cross Sections 93
	2.3.1.5	Angular Distributions 94
	2.3.1.6	Dynamic Pauli Blocking 97
	2.3.1.7	Cutoff Criteria – Stopping Time of the Cascade 98
	2.3.1.8	Light Clusters as Incident Particles 103
	2.3.1.9	Surface Percolation Procedure for Emission of Light Charged
		Clusters 103
	2.3.2	Assumptions, Limits, and Constraints on the Energy and Application
		Regime 109
	2.4	The ISABEL Model 110
	2.4.1	Features of the Model 110
	2.4.1.1	The Nuclear Model 111
	2.4.1.2	The Time-Like Basis Cascading of Particle-Nucleus
		Interactions 112
	2.4.1.3	Nucleus–Nucleus Collisions 113
	2.4.2	Assumptions, Limits, and Constraints on the Energy and Application
		Regime 114

The CEM (Cascade-Exciton Model) Approach 114

Assumptions, Limits, and Constraints on the Energy and Application

Features of the CEM Model - 115

Regime 117

2.5

2.5.1 2.5.2

2.6	Other Intranuclear-Cascade Models 119
2.6.1	The Dubna Models 119
2.6.2	The Hänssgen–Ranft Model 122
2.6.3	The MICRES Model 123
2.0.5	Alternative Models 127
2.7.1	
	The Quantum-Molecular-Dynamic (QMD) Model 127
2.7.1.1	The Equation of Motion and the Reaction Treatment 128
2.7.1.2	The Cutoff Criteria – the Stopping Time of the QMD Process 130
2.7.1.3	Selected Examples of <i>QMD</i> Simulations 132
3	Evaporation and High-Energy Fission 135
3.1	Introduction 135
3.2	The Statistical Model in its Standard Form 136
3.3	The Evaporation Model EVAP of Dostrovsky-Dresner 139
3.3.1	The Level Density Parameter in the EVAP Model 140
3.3.2	The Inverse Cross Sections 142
3.4	The Generalized Evaporation Model (GEM) 143
3.4.1	Evaporation Model in GEM 144
3.4.2	The Decay Width in the GEM Model 145
3.4.3	Parameter of the Inverse Cross Sections and the Coulomb
	Barrier 146
3.4.4	The Level Density Parameter GCCI in the GEM Model 147
3.4.5	The High-Energy Fission Process in the GEM Model 148
3.4.6	Method of Computation 151
3.5	The GSI ABLA Model 154
3.5.1	Time-Dependent Fission Width 157
3.5.2	The Simultaneous Breakup Stage 158
3.5.3	Conclusion of ABLA 159
3.6	The GEMINI Model 159
3.7	High-Energy Fission Models 165
3.7.1	The Dynamics of the Fission Process 166
3.7.2	Basic Features of Fission Models 170
3.7.3	The RAL Model of Atchison 171
3.7.3.1	Postfission Parameters of the RAL Model 173
3.8	Fermi Breakup for Light Nuclei 176
3.9	Photon Evaporation and Gamma Ray Production 178
3.10	Vaporization and Multifragmentation 181
4	The Particle Transport in Matter 185
4.1	Introduction 185
4.2	Hadronic and Electromagnetic Showers 185
4.3	The General Transport Equation 191
4.3.1	
	the Angular Flux, Fluence, Current, and Energy Spectra 195
4.3.2	The Angular Flux, Fluence, Current, and Energy Spectra 195 Monte Carlo Estimation of Particle Fluxes and Reaction Rates 197

X Contents	
4.5	The Elastic Scattering of Protons and Neutrons 201
4.6	The Treatment of Pion Transport in Matter 205
5	Particle Transport Simulation Code Systems 207
5.1	Introduction 207
5.2	Particle Transport Code Systems and Event Generators 208
5.2.1	Particle Transport Systems and Event Generators 209
5.2.2	The Three-Dimensional Geometry Systems of Particle Transport
	Code Systems 210
6	Materials Damage by High-Energy Neutrons and Charged Particles 215
6.1	Introduction 215
6,2	Displacement of Lattice Atoms 216
6.2.1	Damage Energy and Displacements 220
6.3	Hydrogen and Helium Production 224
6.4	Cross Section Examples 227
6.5	Radiation Damage Effects of High-Intensity Proton Beams in the
	Gev Range 231
7	Shielding Issues 233
7.1	Introduction 233
7.2	The Attenuation Length and the Moyer Model 234
7.2.1	Accelerator Shielding and the Generalized Moyer Model 235
7.2.2	The Moyer Model Parameters 238
7.2.3	Attenuation Lengths 241
7.3	Advanced Shielding Methods for Spallation Sources 242
7.3.1	Monte Carlo Discrete Ordinates Coupling 246
7.3.2	Monte Carlo Techniques and Deep Penetration 249
7.4	Sky and Groundshine Phenomena 254
8	The Basic Parameters of Spallation Neutron Sources 257
8.1	Introduction 257
8.2	Parameter Regime for Spallation Neutron Sources 257
8.2.1	The Particle Type 257
8.2.2	The Kinetic Energy 259
8.2.3	The Target Material 262
8.2.4	The Neutron Production 263
8.2.4.1	Spatial Leakage Distribution of Neutrons and Target Shape 264
8.2.5	The Target Heating 266
8.2.6	The Induced Radioactivity 267
8.3	The Spallation Neutron Source Facility 269
8.3.1	Continuous Spallation Neutron Sources 272
8.3.Z	Short-Pulse Spallation Neutron Sources 272
8.3.3	Long-Pulse Spallation Neutron Sources 272
8.3.4	Scattering of Neutrons by Matter 273

Part II	Experiments 277
9	Why Spallation Physics Experiments? 279
9.1	Introduction 279
9.2	Application-Driven Motivation 279
9.3	Space Science and Astrophysics-Driven Motivation 280
9.4	Nuclear Physics Driven Motivation 281
10	Proton-Nucleus-Induced Secondary Particle Production — The "Thin" Target Experiments 287
10.1	Introduction 287
10.2	Neutron, Pion, and Proton Double Differential Measurements and Experiments 288
10.2.1	The Double-Differential Neutron-Production Measurements at the LAMPF-WNR Facility 289
10.2.1.1	The Time-of-Flight Experiment at the LAMPF-WNR Facility 290
10.2.1.2	The Experimental Results of Double-Differential Neutron-Production Cross-Section Measurements 299
10.2.2	The Double-Differential Neutron-Production Measurements at the SATURNE Facility 303
10.2.2.1	The Experimental Apparatus at the SATURNE Accelerator 305
10.2.2.2	The Experimental Results of Double-Differential Neutron-Production Cross Section Measurements 310
10.2.3	The Double-Differential Neutron-Production Measurements at the KEK Facility 312
10.2.3.1	The Time-of-Flight Method with a Short Flight Path 312
10.2.3.2	The Experimental Results of Double-Differential Neutron-Production Cross Section Measurements 316
10.2.4	The Double Differential Pion Production Measurements 318
10.2.4.1	The Double Differential Pion Production Measurements at the Berkley Cyclotron with Incident Protons of 730 MeV 319
10.2.4.2	The Double Differential Pion Production Measurements at the Cyclotron of the Paul Scherer Institut (PSI) 325
10.3	The "Thin" Target Particle Production Measurements at the 2.5 GeV Proton Cooler Synchrotron COSY at Jülich 327
10.3.1	The COoler Synchrotron COSY 331
10.3.2	The NESSI Experiment 333
10.3.2.1	Experimental Setup of NESSI 335
10.3.2.2	Experimental Results of NESSI 341
10.3.3	The PISA Experiment 355
10.3.3.1	Experimental Setup of PISA 356
10.3.3.2	Experimental Results of PISA 361
10.3.3.3	Data Library of H and He in Proton-Induced Reactions 369
10.4	Production of Residual Nuclides at Various Proton Energies 369

ХII	Contents	
	10.4.1	Excitation Functions and Production Cross Sections 370
	10.4.2	Isotopic and Mass Distributions of Residual Nuclides 373
	10.4.2.1	Inverse Kinematics Measurements at GSI 373
	11	Proton-Matter-Induced Secondary Particle Production-The "Thick" Target Experiments 379
	11.1	Introduction 379
	11.2	Proton-Induced Thick Target Experiments in the Energy Range 0.1–2.5 GeV 381
	11.2.1	Experiments to Measure the Neutron Yield of "Thick" Targets 381
	11.2.1.1	The Brookhaven Cosmotron Experiments 381
	11.2.1.2	The Fertile-to-Fissile Conversion Experiments 382
	11.2.1.3	The PSI Thick Target Lead/Bismuth Experiments 388
	11.2.2	Neutron Multiplicities Measured with a 4π Detector at the COSY Accelerator at Jülich 390
	11.2.2.1	Thick Target Results of the NESSI Experiment at the COSY Accelerator 394
	11.2.2.2	A Summary of Neutron Yield Experimental Data 402
	11.2.3	Neutron Leakage Spectra Distributions of Thick Targets 407
	11.2.3.1	The LANL-WNR Thick Target Experiments 407
	11.2.3.2	The KEK Time-of-Flight Thick Pb Target Experiments 408
	11.2.4	The LANL SUNNYSIDE Experiments 409
	11.2.5	Energy Deposition Experiments with Thick Mercury Targets 413
	11.2.5.1	The Energy Deposition Thick Mercury Target Experiment at COSY Jülich 414
	11.2.5.2	The Thick Mercury Target Experiment ASTE at the AGS Accelerator at BNL 419
	12	Neutron Production by Proton, Antiproton, Deuteron, Pion, and Kaon Projectiles 425
	13	Experiments to Study the Performance of Spallation Neutron Sources 431
	13.1	Introduction 431
	13.2	The Target-Moderator-Reflector Issue 431
	13.3	Target-Moderator-Reflector Experiments with Complex Geometries and Realistic Material Compositions 437
	13.3.1	The Early Experiments 437
	13.3.2	Neutron Performance Studies at Reflected Target–Moderator Systems 438
	13.3.2.1	Neutron Studies of a Reflected "T"-Shape Moderator at LANL-WNR 438
	13.3.2.2	The SNQ Target-Moderator-Reflector Experiments at the PSI

Accelerator 439

13.3.3	Experiments of Short-Pulsed Target–Moderator–Reflector Systems 445
13,3.3.1	Target-Moderator-Reflector Experiments at the Hokkaido Electron Linear Accelerator 446
13.3.3.2	Target–Moderator–Reflector Experiments at the Jülich Proton Synchrotron COSY 454
13.3.3.3	Target–Moderator–Reflector Experiments at the Brookhaven Alternating Gradient Synchrotron AGS 466
74	Experiments on Radiation Damage in a Spallation
	Environment 471
14.1	Introduction 471
14.1.1	Irradiation Conditions and Studied Materials 472
14.1.2	Experimental Results 473
14.1.2.1	Microhardness and Three-Point Bending Tests 473
14.1.2.2	Tensile Strength, Scanning- and Transmission Electron Microscopy 475
15	Experiments to Shield High-Energy Neutrons of Spallation
	Sources 481
15.1	Shielding Experiments at the Los Alamos WNR Facility's Spallation Target 482
15.2	Shielding Experiments at the ISIS Spallation Source 486
15.3	Shielding Experiments at the ASTE-AGS
	Target-Moderator-Reflector Assembly 491
Part III	Technology and Applications 495
16	Proton Drivers for Particle Production 497
16.1	An Introduction 497
16.2	Proton Drivers for Spallation Neutron Sources and Secondary Particle Production 498
16.2.1	Synchrotron-Based vs. Linear-Accelerator-Based Spallation Neutron Source 500
16.2.2	The Beam Loss Issue at High-Intensity Proton Accelerators 502
17	The Accelerator-Based Neutron Spallation Sources 505
17.1	Introduction 505
17.2	Research Reactors or Continuous/Pulsed Spallation Sources? 507
17.3	Spallation Neutron Sources 510
17.3.1	The LANL Spallation Neutron Source MLNSC and the Los Alamos Neutron Science Center LANSCE 510
17.3.2	The Rutherford and Appleton Laboratory Short-Pulsed Spallation Neutron Source ISIS 514
17.3.3	The PSI Continuous Spallation Neutron Source SINQ 519

XIV	Contents	
	17.3.4	The European Spallation Neutron Source Project ESS 524
	17.3.5	The ORNL Spallation Neutron Source SNS 538
	17.3.6	The Japanese Spallation Source and the Accelerator Complex J-PARC 548
	17.3.7	Safety Aspects and Radiation Protection 554
	17.3.8	Parameter Overview of the Existing, Commissioned
		and Planned Spallation Neutron Sources with a Beam Power
		Above 0.1 MW 558
	18	Target Engineering 561
	18.1	Introduction 561
	18.2	Spallation Source Neutron-Generating Targets 562
	18.2.1	Spallation Source Neutron-Generating Targets at Beam Power Levels of About Some 100 kW 562
	18.2.2	Spallation Source Neutron-Generating Targets at Beam Power Levels in the MW Range 564
	18.2.2.1	The SINQ Target Systems 565
	18.2.2.2	The Mercury Targets for the Pulsed Spallation Neutron Sources ESS,
		SNS, and JSNS 569
	18.2.2.3	Rotating High-Power Targets 579
	18.2.2.4	Windowless Liquid Metal Targets 582
	18.2.3	Materials for Accelerators and Targets of Spallation Sources 583
	19	Research with Neutrons 585
	19.1	Introduction 585
	19.1.1	Solid-State Physics 587
	19.1.2	Materials Science and Engineering 588
	19.1.3	Chemical Structure, Kinetics, and Dynamics 588
	19.1.4	Soft Condensed Matter 589
	19.1.5	Biology and Biotechnology 589
	19.1.6	Earth and Environmental Science 589
	19.1.7	Fundamental Neutron Physics 590
	19.1.8	Muons as Probes for Condensed Matter 590
	20	Accelerator Transmutation of Nuclear Waste - ATW 593
	20.1	Introduction 593
	20.2	The Concepts of Transmutation 594
	20.2.1	Balance Criteria for ADTT Systems 596
	20.2.2	The Accelerator Issue of ATW/ADTT Systems 597
	20.3	The Spent Reactor Fuel and Transmutation 600
	20.3.1	An Example of a Transmutation Complex 602
	20.4	Partitioning 605
	20.4.1	EU Projects on Partitioning and Transmutation 606
	20.5	Advances in Accelerator Breeding of Fissile Material 607
	20.6	Accelerator Production of Tritium-APT 600

21	Accelerator Production of Electrical Energy – "Energy Amplifying" 613
21.1	Introduction 613
21.2	Principle of the "Energy-Amplifier" 613
21.3	Feasibility of the "Energy Amplifier" 615
21.3.1	An Energy Amplifier Test Experiment 618
21.4	Advantages and Disadvantages of the EA Concept 619
22	Advanced Applications of Spallation Physics 623
22.1	Proton and Light Heavy Ion Cancer Therapy 623
22.1.1	History of Hadron Therapy 624
22,1.2	What is Radiation Therapy and How Does it Work? 626
22.1.3	Differences Between Protons, Heavy Ion, and X-ray Therapy 627
22.2	High-Energy Physics Calorimeter 631
22.2.1	The Physics of Particle Calorimetry 631
22.2.2	Electromagnetic Showers 633
22,2,3	Hadronic Showers 634
22,2,4	Combined Electromagnetic/Hadronic Calorimeters 635
22.3	Neutrino Factories and Neutrino Super/Beta Beams 638
22.3.1	Some Words on Research with Neutrinos 638
22.3.2	International Scoping Study of ν Factories and Superbeam Facilities 639
22.4	Ultracold Neutrons 642
22.4.1	History 642
22.4.2	Properties of UCNs 642
22,4.3	Reflecting Materials 644
22.4.4	UCN Production 645
22.4.5	Experiments with UCN 647
22.4.5.1	Measurement of the Neutron Lifetime 648
22.4.5.2	Measurement of the Neutron Electric Dipole Moment 648
22.4.5.3	Observation of the Gravitational Interactions of the Neutron 649
22.4.5.4	Measurement of the Neutron-Mirror Neutron Oscillation Time 650
22.4.5.5	Measurement of the <i>a</i> -Coefficient of the Neutron Beta Decay
	Correlation 651
23	Space Missions and Radiation in Space 653
23.1	Introduction 653
23.2	Galactic Cosmic Ray (GCR) Induced Reactions in Moon and MARS
	Soil 654
23.2.1	GCR-Induced Neutron Flux Density in the Lunar Soil During Apollo
	Missions 654
23.2.2	The Mars Observer Orbiter Mission to Measure the
	Spallation-Induced Gamma Flux Return of GCR on the Martian
	Surface 657
23.2.2.1	The Aim of the Mars Observer Mission 657

xvi	Contents	
	23.2.2.2	Application to the Martian Surface 659
	23.3	The Space Experiment LDEF (Long Duration Exposure Facility) 66.
	23.3.1	The Aim of the LDEF Mission 663
	23.3.2	The LDEF Orbiter System and Results on Induced Radioactivity of LDEF Materials 665
	23.3.3	Hazard Radiations in Space 669
	Appendix A	Values of Fundamental Physical Constants and Relations 675
	Appendix B	Basic Definitions in Nuclear Technology Concerning the Fuel Cycle 679
	Appendix C	Material Properties of Structure and Target Materials 683
	Appendix D	Moderator and Reflector Materials 687
	Appendix E	Shielding Materials 689
		References 691

Index *757*