Editors

Gil Alterovitz and Marco Ramoni

Knowledge-Based Bioinformatics

From analysis to interpretation

Contents

	Preia	ce	XIII
	List	of Contributors	xvii
PA	ART I	FUNDAMENTALS	1
Se	ection	1 Knowledge-Driven Approaches	3
1	Knov	vledge-based bioinformatics	5
	Eric I	Karl Neumann	
	1.1	Introduction	5
	1.2	Formal reasoning for bioinformatics	7
	1.3	Knowledge representations	10
	1.4	Collecting explicit knowledge	10
	1.5	Representing common knowledge	11
	1.6	Capturing novel knowledge	15
	1.7	Knowledge discovery applications	15
	1.8	Semantic harmonization: the power and limitation of ontologies	18
	1.9	Text mining and extraction	19
	1.10	Gene expression	20
	1.11	Pathways and mechanistic knowledge	22
	1.12	Genotypes and phenotypes	24
	1.13	The Web's role in knowledge mining	25
	1.14	New frontiers	26
		1.14.1 Requirements for linked knowledge discovery	26
		1.14.2 Information aggregation	26
		1.14.3 The Linked Open Data initiative	28
		1.14.4 Information articulation	28
		1.14.5 Next-generation knowledge discovery	30
	1.15	References	31
2		vledge-driven approaches to genome-scale analysis ah Tipney and Lawrence Hunter	33
	2.1	Fundamentals	33
	~	2.1.1 The genomic era and systems biology	33

		2.1.2	The exponential growth of biomedical knowledge	34
		2.1.3	The challenges of finding and interacting with	
			biomedical knowledge	35
	2.2	Challe	enges in knowledge-driven approaches	37
		2.2.1	We need to read; development of automatic methods to	
			extract data housed in the biomedical literature	37
		2.2.2	Implicit and implied knowledge; the forgotten data source	41
		2.2.3	Humans are visual beings: so should their knowledge be	42
	2.3	Currer	nt knowledge-based bioinformatics tools	43
		2.3.1	Enrichment tools	44
		2.3.2	Integration and expansion: from gene lists to networks	46
		2.3.3	Expanding the concept of an interaction	48
		2.3.4	A systematic failure to support advanced scientific	
			reasoning	50
	2.4	3R sys	stems: reading, reasoning and reporting the way towards	
		biome	dical discovery	50
		2.4.1	3R knowledge networks populated by reading and	
			reasoning	52
		2.4.2	Implied association results in uncertainty	53
		2.4.3	Reporting: using 3R knowledge networks to tell	
			biological stories	54
	2.5	The H	lanalyzer: a proof of 3R concept	55
	2.6	Ackno	owledgements	62
	2.7	Refere	ences	62
3	Techi	വിക്കും	s and best practices for building bio-ontologies	67
3			Aranguren, Robert Stevens, Erick Antezana, Jesualdo	07
			ndez-Breis, Martin Kuiper, and Vladimir Mironov	
	3.1	Introd		67
	3.2		ledge representation languages and tools for building	07
			itologies	68
		3.2.1	RDF (resource description framework)	71
		3.2.2		72
		3.2.3	OBO format	77
	3.3		practices for building bio-ontologies	78
	212	3.3.1	Define the scope of the bio-ontology	78
		3.3.2	Identity of the represented entities	79
		3.3.3	Commit to agreed ontological principles	79
		3.3.4	Knowledge acquisition	80
		3.3.5	Ontology Design Patterns (ODPs)	80
		3.3.6	Ontology evaluation	81
		3.3.7	Documentation	83
	3.4	Conclu		83
	3.5		owledgements	84
	3.6	Refere		84

4	_	n, implementation and updating of knowledge bases	87
	Sarak	n Hunter, Rolf Apweiler, and Maria Jesus Martin	
	4.1	Introduction	87
	4.2	Sources of data in bioinformatics knowledge bases	90
		4.2.1 Data added by internal curators	90
		4.2.2 Data submitted by external users and collaborators	90
		4.2.3 Data added automatically	91
	4.3	Design of knowledge bases	91
		4.3.1 Understanding your end users and understanding	
		their data	92
		4.3.2 Interactions and interfaces: their impact on design	93
	4.4	Implementation of knowledge bases	93
		4.4.1 Choosing a database architecture	93
		4.4.2 Good programming practices	96
		4.4.3 Implementation of interfaces	97
	4.5	Updating of knowledge bases	98
		4.5.1 Manual curation and auto-annotation	98
		4.5.2 Clever pipelines and data flows	101
		4.5.3 Lessening data maintenance overheads	104
	4.6	Conclusions	105
	4.7	References	105
Se	ection	2 Data-Analysis Approaches	107
5		sical statistical learning in bioinformatics	109
	5.1		109
	5.2		109
	3.2	<i>C</i>	110
		5.2.1 Multiple testing and false discovery rate5.2.2 Correlated errors	111
	5.3		111
	3.3	Exploratory analysis	112
		5.3.1 Clustering	116
		5.3.2 Principal components 5.3.3 Multidimensional scaling (MDS)	117
	5.4	5.3.3 Multidimensional scaling (MDS)	117
	5.4	Classification and prediction 5.4.1 Discriminant analysis	120
		¥	
	<i>5 5</i>	*	120
	5.5	References	122
6		sian methods in genomics and proteomics studies	125
	Nino	Sun and Hongyu Zhao	
	_		
	6.1	Introduction	125
	6.1 6.2	Introduction Bayes theorem and some simple applications	126
	6.1	Introduction	

6.5	Inference of transcriptional regulatory networks from joint analysis of protein-DNA binding data and gene expression da	ta 131
6.6	Inference of protein and domain interactions from yeast	.ta 131
0.0	two-hybrid data	132
6.7	Conclusions	134
6.8	Acknowledgements	135
6.9	References	135
	omatic text analysis for bioinformatics knowledge discovery	137
	trich Rebholz-Schuhmann and Jung-jae Kim	
7.1	Introduction	137
	7.1.1 Knowledge discovery through text mining	138
	7.1.2 Need for processing biomedical texts	139
7.0	7.1.3 Developing text mining solutions	141
7.2	Information needs for biomedical text mining	142
	7.2.1 Efficient analysis of normalized information 7.2.2 Interactive seeking of textual information	142
7.3		145
1.3	Principles of text mining	147
	7.3.1 Components 7.3.2 Methods	147
7.4	Development issues	150
7.4	7.4.1 Information needs	152 153
		153
	7.4.2 Corpus construction7.4.3 Language analysis	153 154
	7.4.4 Integration framework	154
	7.4.5 Evaluation	155
7.5	Success stories	156
7.5	7.5.1 Interactive literature analysis	156
	7.5.2 Integration into bioinformatics solutions	150 157
	7.5.3 Discovery of knowledge from the literature	158
7.6	Conclusion	159
7.7	References	160
PART	II APPLICATIONS	169
Section	n 3 Gene and Protein Information	171
Var	sha K. Khodiyar, Emily C. Dimmer, Rachael P. Huntley, and h C. Lovering	173
8.1	Introduction	173
	8.1.1 Data submission curation	174
	8.1.2 Value-added curation	174
8.2	Gene Ontology (GO)	175

		8.2.1	Gene Ontology and the annotation of the human	177
			proteome	175
		8.2.2	Gene Ontology Consortium data sets	176
		8.2.3	GO annotation methods	176
		8.2.4	Different approaches to manual annotation	183
		8.2.5	Ontology development	183
	8.3	-	arative genomics and electronic protein annotation	186
		8.3.1	Manual methods of transferring functional annotation	186
		8.3.2	Electronic methods of transferring functional	1.07
		0.2.2	annotation	187
	0.4	8.3.3	Electronic annotation methods	188
	8.4		unity annotation Feedback forms	189
		8.4.1		190
		8.4.2	Wiki pages	190
	0.5	8.4.3 Limita	Community annotation workshops	190 191
	8.5	8.5.1	GO cannot capture all relevant biological aspects	191
		8.5.2	The ontology is always evolving	192
		8.5.3	The volume of literature	192
		8.5.4	Missing: published data	192
		8.5.5	Manual curation is expensive	192
	8.6		sing GO annotations	193
	0.0	8.6.1	Tools for browsing the GO	194
		8.6.2	e	199
			GO slims	202
		8.6.4	GO displays in other databases	203
	8.7	Concl		203
	8.8	Refere		204
9			improving genome annotation	209
			dge and Jennifer Harrow	200
	9.1		asis of gene annotation	209
		9.1.1	C	209
		9.1.2		211
		9.1.3	Annotation based on transcribed evidence	211
		9.1.4	A comparison of annotation processes	213
		9.1.5	The CCDS project	214
		9.1.6	Pseudogene annotation	215
	0.0	9.1.7	The annotation of non-coding genes	218
	9.2		mpact of next generation sequencing on genome	220
		annota 9.2.1		220 220
		9.2.1	The annotation of multispecies genomes Community annotation	220
		9.2.2	Alternative splicing and new transcriptomics data	223
		9.2.3	The annotation of human genome variation	225
		9.2.4	The annotation of human genome variation	443

	9.3	9.2.5 Referen	The annotation of polymorphic gene families nces	226 228
10			om prokaryotic, eukaryotic, and viral genomes stered according to phylotype on a Self-Organizing	
	Map	ible clus	stered according to phytotype on a Sen-Organizing	233
	_	hi Ahe 3	Shigehiko Kanaya, and Toshimichi Ikemura	200
	10.1	Introdu	*	233
	10.2		learning SOM (BLSOM) adapted for genome informatics	
	10.3		ne sequence analyses using BLSOM	237
			BLSOMs for 13 eukaryotic genomes	237
			Diagnostic oligonucleotides for phylotype-specific	
			clustering	238
		10.3.3	A large-scale BLSOM constructed with all sequences	
			available from species-known genomes	240
		10.3.4	Phylogenetic estimation for environmental DNA	
			sequences and microbial community comparison using	
			the BLSOM	242
		10.3.5	Reassociation of environmental genomic fragments	
			according to species	245
	10.4	Conclu	sions and discussion	247
	10.5	Refere	nces	248
Se	ction	4 Bio	omolecular Relationships and	
		M	eta-Relationships	251
11			twork analysis and applications	253
			Jingyuan Deng, Chunsheng V. Fang, Xiao Zhang, and	
		Jason L		
	11.1	Introdu		253
	11.2		gy analysis and applications	254
		11.2.1	Global structure of molecular networks: scale-free,	
		11.00	small-world, disassortative, and modular	254
			Network statistics/measures	258
			Applications of topology analysis	258
	110		Challenges and future directions of topology analysis	262
	11.3		k motif analysis	263
			Motif analysis: concept and method	263
			Applications of motif analysis	263
	44.4		Challenges and future directions of motif analysis	266
	11.4		rk modular analysis and applications	267
			Density-based clustering methods	268
		11.4.2	Partition-based clustering methods	269

		11.4.3 Centrality-based clustering methods	270
		11.4.4 Hierarchical clustering methods	271
		11.4.5 Applications of modular analysis	272
		11.4.6 Challenges and future directions of modular analysis	273
	11.5	Network comparison	274
		11.5.1 Network comparison algorithms: from computer science	
		to systems biology	274
		11.5.2 Network comparison algorithms for molecular networks	275
		11.5.3 Applications of molecular network comparison	277
		11.5.4 Challenges and future directions of network	
		comparison	278
	11.6	Network analysis software and tools	279
	11.7	Summary	279
	11.8	Acknowledgement	282
	11.9	References	282
12	Riolos	gical pathway analysis: an overview of Reactome and other	
		ative pathway knowledge bases	289
		A. Haw, Marc E. Gillespie, and Michael A. Caudy	
	12.1	Biological pathway analysis and pathway knowledge bases	289
	12.2	Overview of high-throughput data capture technologies and data	
		repositories	290
	12.3	Brief review of selected pathway knowledge bases	293
		12.3.1 Reactome	293
		12.3.2 KEGG	296
		12.3.3 WikiPathways	297
		12.3.4 NCI-Pathway Interaction Database	297
		12.3.5 NCBI-BioSystems	298
		12.3.6 Science Signaling	299
		12.3.7 PharmGKB	299
	12.4	How does information get into pathway knowledge bases?	300
	12.5	Introduction to data exchange languages	301
		12.5.1 SBML	301
		12.5.2 BioPAX	302
		12.5.3 PSI MI	303
		12.5.4 Comparison of data exchange formats for different	
		pathway knowledge bases	303
	12.6	Visualization tools	304
	12.7	Use case: pathway analysis in Reactome using statistical analysis	••-
		of high-throughput data sets	305
	12.8	Discussion: challenges and future directions of pathway	
		knowledge bases	310
	12.9	References	311

Mie R	application to drug treatments
13.1	Complex traits: clinical phenomenology and molecular
15.1	background
13.2	Why it is challenging to infer relationships between genes and
13.2	phenotypes in complex traits?
13.3	Bottom-up or top-down: which approach is more useful in
12.2	delineating complex traits key drivers?
13.4	High-throughput technologies and their applications in complex
15.7	traits genetics
13.5	Integrative systems biology: a comprehensive approach to
15.5	mining high-throughput data
13.6	Methods applying systems biology approach in the identification
15.0	of functional relationships from gene expression data
	13.6.1 Methods using quantitative expression data to identify
	correlations in expression between genes (clustering)
	13.6.2 Methods integrating functional genomics into cellula
	functional classes
	13.6.3 Methods combining functional genomics results and
	existing biological information to construct novel
	biological networks
13.7	Advantages of networks exploration in molecular biology and
	drug discovery
13.8	Practical examples of applying systems biology approaches and
	network exploration in the identification of functional module
	and disease-causing genes in complex phenotypes/diseases
13.9	Challenges and future directions
13.10	References
Trend	is and conclusion
Index	