Dynamics of Smart Structures

Ranjan Vepa

WILEY

Contents

Prefa	ace		
1	From Smart Materials to Smart Structures		1
1.1	Modern Materials: A Survey		1
	I.I.I	Polymers Charles in CP 1	1
	1.1.2		1
	1.1.3	1 , ,	2
1.0	1.1.4	Applications of Polymers	2 3 3
1.2	Cerami		3
	1.2.1	Properties of Ceramics	4
1 2	1.2.2	Applications of Ceramics	5
1.3	Composites		<i>5</i> 5
	1.3.1	Micro- and Macrocomposites	5
	1.3.2	Fibre-reinforced Composites	6
	1.3.3	Continuous-fibre Composites	6
	1.3.4	Short-fibre Composites	6 7 7
1.4	1.3.5	Fibre-matrix Composites	7
1.4		ction to Features of Smart Materials	/
	1.4.1	Piezoelectric, Piezoresistive and Piezorestrictive	7
	1.4.2	Electrostrictive, Magnetostrictive and Magnetoresistive	7
	1.4.3	The Shape Memory Effect	8
1 5	1.4.4	Electro- and Magnetorheological Effects	9
1.5	Survey of Smart Polymeric Materials		9
	1.5,.1	Novel Inorganic Thin Film Materials	10
	1.5.2	Integrative Polymeric Microsystems	10
1.0	1.5.3	Electroactive Polymers	10
1.6		Memory Materials	11
	1.6.1	Shape Memory Alloys	11
	1.6.2	Magnetically Activated Shape Memory Alloys	11
	1.6.3	Shape Memory Polymers	12
1.7	_	ex Fluids and Soft Materials	12
	1.7.1	Self-assembled Fluids	12
	1.7.2	Electro- and Magnetorheological Fluids	12
4.0	1.7.3	Smart Polyelectrolyte Gels	13
1.8		Fibre Composites	13 13
1.9	Optical Fibres		
1.10	Smart Structures and Their Applications		

	I.IU.I	Meaicai Devices	15
	1.10.2	Aerospace Applications	15
	1.10.3	Structural Health Monitoring	15
2	Transdı	icers for Smart Structures	19
2.1	Introduction		19
2.2	Transdu	cers for Structural Control	21
	2.2.1	Resistive Transducers	21
	2.2.2	Inductive Transducers	24
	2.2.3	Capacitive Transducers	27
	2.2.4	Cantilever-type Mechanical Resonator Transducers	27
	2.2.5	Eddy Current Transducer	28
	2.2.6	Balancing Instruments	29
	2.2.7	Transduction Mechanisms in Materials	29
	2.2.8	Hydrodynamic and Acoustic Transduction Mechanisms	32
	2.2.9	Transducer Sensitivities, Scaling Laws for Example Devices	33
	2.2.10	Modelling and Analysis of a Piezoelectric Transducer	34
2.3	Actuatio	on of Flexible Structures	38
	2.3.1	Pre-stressed Piezoelectric Actuators	39
	2.3.2	Shape Memory Material-based Actuators	43
2.4	Sensors	for Flexible and Smart Structures	44
	2.4.1	Résonant Sensors	44
	2.4.2	Analysis of a Typical Resonant Sensor	44
	2.4.3	Piezoelectric Accelerometers	48
	2.4.4	The Sensing of Rotational Motion	51
	2.4.5	The Coriolis Angular Rate Sensor	53
2.5	Fibre-op	otic Sensors	55
	2.5.1	Fibre Optics: Basic Concepts	55
	2.5.2	Physical Principles of Fibre-optic Transducers	55
	2,5.3	Optical Fibres	60
	2.5.4	Principles of Optical Measurements	64
	2.5.5	Fibre-optic Transducers for Structural Control	64
3	Fundan	nentals of Structural Control	75
3.1	Introduc		75
3.2	Analysis	s of Control Systems in the Time Domain	75
	3.2.1	Introduction to Time Domain Methods	75
	3.2.2	Transformations of State Variables	77
	3.2.3	Solution of the State Equations	78
	3.2.4	State Space and Transfer Function Equivalence	80
	3.2.5	State Space Realizations of Transfer Functions	81
3.3		es of Linear Systems	82
	3.3.1	Stability, Eigenvalues and Eigenvectors	82
	3.3.2	Controllability and Observability	83
	3.3.3	Stabilizability	85
	3.3.4	Transformation of State Space Representations	85
3.4	Shaping	the Dynamic Response Using Feedback Control	86
3.5		ng of the Transverse Vibration of Thin Beams	88
	3.5.1	Vibrations of Cantilever Beam	94
	3.5.2	Vibrations of Simply Supported, Slender Uniform Beam	97

3.6	Externa	ally Excited Motion of Beams	98
3.7		-loop Control of Flexural Vibration	100
4	Dynam	nics of Continuous Structures	117
4.1		nentals of Acoustic Waves	117
	4.1.1	Nature of Acoustic Waves	117
	4.1.2	Principles of Sound Generation	118
	4.1.3	Features of Acoustic Waves	118
4.2	Propaga	ation of Acoustic Waves in the Atmosphere	119
	4.2.1	Plane Waves	119
	4.2.2	Linear and Non-linear Waveforms	122
	4.2.3	Energy and Intensity	123
	4.2.4	Characteristic Acoustic Impedance	124
	4.2.5	Transmission and Reflection of Plane Waves at an Interface	124
4.3	Circuit	Modelling: The Transmission Lines	125
	4.3.1	The Transmission Line	125
	4.3.2	The Ideal Transmission Line	126
	4.3.3	Matched Lines	127
	4.3.4	Reflection from the End of a Transmission Line: Standing Waves	128
	4.3.5	The Mechanical Transmission Line: An Electro-mechanical Analogy	131
	4.3.6	Dissipation of Waves in Transmission Lines	132
4.4	Mechar	nics of Pure Elastic Media	135
	4.4.1	Definition of Stress and Strain	135
	4.4.2	Linear Elastic Materials	138
	4.4.3	Equations of Wave Motion in an Elastic Medium	142
	4.4.4	Plane Waves in an Infinite Solid	143
	4.4.5	Spherical Waves in an Infinite Medium	145
	4.4.6	Transmission Line Model for Wave Propagation in Isotropic Solids	146
	4.4.7	Surface Waves in Semi-infinite Solids	148
5	Dynam	ics of Plates and Plate-like Structures	161
5.1	Flexura	l Vibrations of Plates	161
5.2	The Eff	ect of Flexure	163
5.3	Vibratio	ons in Plates of Finite Extent: Rectangular Plates	168
5.4	Vibratio	ons in Plates of Finite Extent: Circular Plates	174
5.5	Vibratio	ons of Membranes	178
6	Dynam	ics of Piezoelectric Media	187
6.1	Introdu	ction	187
6.2		ectric Crystalline Media	192
	6.2.1	Electromechanically Active Piezopolymers	196
6.3	Wave P	ropagation in Piezoelectric Crystals	197
	6.3.1	Normal Modes of Wave Propagation in Crystalline Media	200
	6.3.2	Surface Wave Propagation in Piezoelectric Crystalline Media	202
	6.3.3	Influence of Coordinate Transformations on Elastic Constants	203
	6.3.4	Determination of Piezoelectric Stiffened Coefficients	207
6.4		ission Line Model	210
	6.4.I	Transmission Line Model for Wave Propagation in	
		Non-piezoelectric Crystalline Solids	210

	6.4.2	Transmission Line Model for Wave Propagation in Piezoelectric	
		Crystalline Solids	213
6.5	Discret	e Element Model of Thin Piezoelectric Transducers	214
	6.5,1	One-port Modelling of Thin Piezoelectric Transducers	218
	6.5.2	Two-port Modelling of a Piezoelectric Diaphragm Resting on a Cavity	219
	6.5.3	Modelling of a Helmholtz-type Resonator Driven by a Piezoelectric	
		Disc Transducer	220
	6.5.4	Modelling of Ultrasonic Wave Motors	223
6.6	The Ge	neration of Acoustic Waves	226
	6.6.1	Launching and Sensing of SAWs in Piezoelectric Media	229
	6.6.2	Wave Propagation in Periodic Structures	232
7	Mecha	nics of Electro-actuated Composite Structures	241
7.1	Mechanics of Composite Laminated Media		
	7.1.1	Classical Lamination Theory	242
	7.1.2	Orthotropic, Transverse Isotropic and Isotropic Elastic Laminae	242
	7.1. 3	Axis Transformátions	245
	7.1.4	Laminate Constitutive Relationships	246
	7.1.5	Dynamics of Laminated Structures	250
	7.1.6	Equations of Motion of an Orthotropic Thin Plate	251
	7.1.7	First-order Shear Deformation Theory	254
	7.1.8	Composite Laminated Plates: First-order Zig-zag Theory	255
	7.1.9	Elastic Constants Along Principal Directions	259
7.2	Failure	of Fibre Composites	261
7.3	Flexura	ll Vibrations in Laminated Composite Plates	264
	7.3.I	Equations of Motion of Continuous Systems in Principal	
		Coordinates: The Energy Method	265
	7.3.2	Energy Methods Applied to Composite Plates	268
7.4	Dynam	ic Modelling of Flexible Structures	269
	7.4.1	The Finite Element Method	270
	7.4.2	Equivalent Circuit Modelling	270
7.5	Active	Composite Laminated Structures	271
	7.5.I	Frequency Domain Modelling for Control	271
	7.5.2	Design for Controllability	277
8		ics of Thermoelastic Media: Shape Memory Alloys	291
8.1		nentals of Thermoelasticity	291
	8.1.1	Basic Thermodynamic Concepts	291
8.2		ape Memory Effect: The Phase-transformation Kinetics	293
	8.2.1	Pseudo-elasticity	294
	8.2.2	The Shape Memory Effect	296
	8.2.3	One-way and Two-way Shape Memory Effects	296
	8.2.4	Superelasticity	297
8.3		near Constitutive Relationships	298
	8.3.1	The Shape Memory Alloy Constitutive Relationships	299
8.4		al Control of Shape Memory Alloys	301
8.5	The Analysis and Modelling of Hysteresis		302
	8.5.1	The Nature of Hysteresis	302
	8.5.2	Hysteresis and Creep	303

8.5.3

Hysteresis Modelling: The Hysteron

303

	8.5.4	Modelling the Martensite Fraction-temperature Hysteresis	308
	8.5.5	Decomposition of Hysteretic Systems	309
8.6 8.7	Constitutive Relationships for Non-linear and Hysteretic Media		
		Memory Alloy Actuators: Architecture and Model Structure	312
	8.7.1	Simulation and Inverse Modelling of Shape Memory Alloy Actuators	312
	8.7.2	Control of Shape Memory Alloy Actuators	314
9	Contro	ller Design for Flexible Structures	321
9.1	Introdu	ction to Controller Design	321
9.2	Control	ler Synthesis for Structural Control	321
	9.2.1	Problem; Encountered in Structural Control: Spillover, Model	
		Uncertainty, Non-causal Compensators and Sensor Noise	322
	9.2.2	Concepts of Stability	323
	9.2.3	Passive Controller Synthesis	327
	9.2.4	Active Controller Synthesis and Compensation	330
	9.2.5	Reduced-order Modelling: Balancing	336
	9.2.6	Zero-spillover Controller Synthesis	338
9.3	Optimal Control Synthesis: H_{∞} and Linear Matrix Inequalities		
	9.3.1	The Basis for Performance Metric Optimization-based Controller Synthesis	340
	9.3.2	Optimal H_∞ Control: Problem Definition and Solution	344
	9.3.3	Optimal Control Synthesis: Linear Matrix Inequalities	346
9.4	Optima	Design of Structronic Systems	350
	9.4.1	Optimal Robust Design of Controlled Structures	351
	9.4.2	Optimum Placement and Co-location of the Sensor and Actuators:	
		The Active Clamp	357
	9.4.3	Optimal Controller Design Applied to Smart Composites	361
	9.4.4	Optimal Robust Stabilization of Smart Structures	370
9.5		of an Active Catheter	375
9.6	Modelling and Control of Machine Tool Chatter		
	9.6.1	Stability Analysis of Machine Tool Chatter	380
	9.6.2	Feedback Control of Machine Tool Chatter	382

389

Index