DURABILITY DESIGN OF CONCRETE STRUCTURES IN SEVERE ENVIRONMENTS Taylor & Francis ## Contents | | Preface | viii | |---|--|------| | 1 | Historical review | 1 | | 2 | Field performance | 14 | | | 2.1 General 14 | | | | 2.2 Harbour structures 15 | | | | 2.3 Bridges 38 | | | | 2.4 Offshore structures 48 | | | | 2.5 Other structures 59 | | | 3 | Corrosion of embedded steel | 60 | | | 3.1 General 60 | | | | 3.2 Chloride penetration 60 | | | | 3.3 Passivity of embedded steel 69 | | | | 3.4 Corrosion rate 71 | | | | 3.5 Cracks 76 | | | | 3.6 Galvanic coupling between freely exposed and embedded steel 78 | | | 4 | Other deteriorating processes | 80 | | | 4.1 General 80 | | | | 4.2 Freezing and thawing 81 | | | | 4.3 Alkali-aggregate reaction 83 | | | vi | Contents | | |----|---|-----| | 5 | Codes and practice | 86 | | | 5.1 General 865.2 Durability requirements for offshore concrete structures 875.3 Durability requirements for land-based concrete structures 89 | | | 6 | Probability of steel corrosion | 94 | | | 6.1 General 94 6.2 Calculation of chloride penetration 96 6.3 Calculation of probability 97 6.4 Calculation of corrosion probability 98 6.5 Input parameters 99 6.6 Durability analysis 110 6.7 Evaluation and discussion of obtained results 115 | | | 1 | Additional protective strategies and measures | 117 | | | 7.1 General 117 7.2 Stainless steel reinforcement 117 7.3 Cathodic prevention 120 7.4 Non-metallic reinforcement 123 7.5 Corrosion inhibitors 125 7.6 Concrete surface protection 125 7.7 Prefabricated structural elements 129 | | | 8 | Concrete quality control | 132 | | | 8.1 General 132 8.2 Chloride diffusivity 134 8.3 Electrical resistivity 139 8.4 Concrete cover 145 8.5 Electrical continuity 146 | | | 9 | Achieved construction quality | 148 | | | 9.1 General 1489.2 Compliance with specified durability 1499.3 Durability on the construction site 1499.4 Potential durability 150 | | | | | Contents | vii | |----|--|----------|-----| | 10 | Condition assessment and preventive maintenance | | 151 | | | 10.1 General 151 | | | | | 10.2 Control of chloride penetration 152 | | | | | 10.3 Prediction of corrosion probability 156 | | | | | 10.4 Protective measures 157 | | | | 11 | Practical applications | | 158 | | | 11.1 General 158 | | | | | 11.2 'Nye Filipstadkaia', Oslo (2002) 159 | | | | | 11.3 'New Container Harbour', Oslo (2007) 162 | | | | | 11.4 'Nye Tjuvholmen', Oslo (2005–) 169 | | | | | 11.5 Evaluation and discussion of obtained results 176 | | | | 12 | Life cycle costs | | 178 | | | 12.1 General 178 | | | | | 12.2 Case study 179 | | | | | 12.3 Evaluation and discussion of obtained results 183 | | | | 13 | Life cycle assessment | | 184 | | | 13.1 General 184 | | | | | 13.2 Framework for life cycle assessment 186 | | | | | 13.3 Case study 188 | | | | | 13.4 Evaluation and discussion of obtained results 193 | | | | 14 | Recommended job specifications | | 194 | | | 14.1 General 194 | | | | | 14.2 Job specifications 195 | | | | | References | | 198 | | | Index | | 215 |