


Blast protection of civil infrastructures and vehicles using composites

Edited by Nasim Uddin

Blast protection of civil infrastructures and vehicles using composites

Edited by Nasim Uddin

Contents

	Contributor contact details Preface	x xiii
Part I	Introduction	1
1	Blast threats and blast loading D. C. Weggel, The University of North Carolina at Charlotte, USA	3
1.1	Introduction	3
1.2	Basics of high explosives	3
1.3	Some important explosive properties and physical forms	7
1.4	A generic explosive device	10
1.5	Blast waves in free air	11
1.6	Blast loading categories	15
1.7	Blast-induced load types and load cases	17
1.8	Threat assessment for design	22
1.9	Simplified blast load computation	24
1.10	Numerical examples of simplified blast load computation	32
1.11	Additional resources	37
1.12	References	41
2	Standards and specifications for composite blast	
	protection materials	44
	M. CHALK, Solent Composite Systems Ltd, UK	
2.1	Introduction	44
2.2	Why do we want standards?	44
2.3	Who is responsible for applying standards?	45
2.4	How should we interpret standards?	45
2.5	What is relevant for standards for composite blast	
	protection products?	48
2.6	When will composite blast protection standards be used?	50
2.7	Where can standards be applied for the use of composites?	51

Vİ	Contents	
2.8	The future for standards and specifications for composite blast protection	51
2.9	Conclusion	52
2.10	Sources of further information and advice	53
2.11	References	53
3	Processing polymer matrix composites for blast	
	protection	54
	H. TAN and K. M. PILLAI, University of	
	Wisconsin-Milwaukee, USA	
3.1	Introduction	54
3.2	Liquid composite molding (LCM)	58
3.3	Modeling of the mold-filling stage in liquid composite	
	molding	60
3.4	Permeability measurement in liquid composite molding	74
3.5	Summary	78
3.6	References	78
4	High energy absorbing composite materials for blast	88
	resistant design M. YANG, University of Texas, USA; and P. QIAO,	00
	Washington State University, USA	
4.1	Introduction	88
4.2	Advanced and new materials for impact and energy	
	absorption	89
4.3	Design philosophy for blast protection	101
4.4	Case studies of blast absorbing materials	103
4.5	Summary and concluding remarks	111 114
4.6	References	114
5	Modeling the blast response of hybrid laminated	
	composite plates	120
	A. E. BOGDANOVICH, 3TEX, Inc., USA	
5.1	Introduction	120
5.2	Synopsis of 3D Mosaic analysis approach	126
5.3	Numerical simulations of a structural response for blast	
	loading: input	132
5.4	Formulation of the 3D dynamic boundary value problem	134
5.5	Numerical results of the blast response for the four panels	140
5.6	Comparison of the blast response characteristics for the	170
	four panels	178

	Contents	vii
5.7	Comparison of the blast response characteristics for a	
	longer time interval	191
5.8	Effect of internal material damping	195
5.9	Comparisons of theoretical and experimental results	201
5.10	Summary and conclusions	205
5.11	Acknowledgements	208
5.12	References	208
6	Response of composite panels to blast wave	
	pressure loadings	212
	K. Lee, Old Dominion University, USA; and	
	S. W. LEE, University of Maryland, USA	
6.1	Introduction	212
6.2	A comprehensive methodology for damage assessment	214
6.3	A simplified methodology for failure assessment	216
6.4	Numerical tests on flat laminated composite panels	223
6.5	Conclusions and future trends	231
6.6	References	232
Part II	Applications	233
7	Ceramic matrix composites for ballistic protection of	
	vehicles and personnel	235
	J. J. SCHULDIES, Industrial Ceramic Technology, Inc.,	
	USA; and R. NAGESWARAN, SMAHT Ceramics, Inc., USA	
7.1	Introduction	235
7.2	Technology overview	236
7.3 7.4	Technology approach for improved ballistic protection Impact of improved ceramic composites for ballistic	238
7.7	protection	240
7.5	References	
1.5	References	242
8	Developing mine blast resistance for composite	
	based military vehicles	244
	M. French and A. Wright, QinetiQ, UK	
8.1	Introduction	244
8.2	Occupant injury mechanisms	251
8.3	Integrated vehicle survivability	252
8.4	The use of composite materials in vehicles	255
8.5	Mine blast loading of composite vehicle structures	259

viii	Contents	
8.6 8.7	Conclusion References	267 267
9	Blast protection of buildings using fibre-reinforced polymer (FRP) composites P. A. BUCHAN and J. F. CHEN, The University of Edinburgh, UK	269
9.1	Introduction	269
9.2	Consequences of an explosion	271
9.3	Assessing if a building requires protection from blast	272
9.4	General design guidance for blast protection of	
	buildings	272
9.5	Retrofitting buildings for blast protection	275
9.6	Retrofitting buildings for blast protection using	277
	fibre-reinforced polymer (FRP) composites	277
9.7	Future developments and trends	291
9.8	Sources of further information and advice	292
9.9	Conclusions	293
9.10	References	294
10	The use of composites in blast-resistant walls L. A. Louca and A. S. Fallah, Imperial College London, UK	298
10.1	Introduction	298
10.2	Use of composites in strengthening applications	308
10.3	Use of composites in replacement applications	315
10.4	Use of composites in conjunction with metals	333
10.5	Concluding remarks	336
10.6	References	338
11	Using composite behavior to improve the blast resistance of columns in buildings M. P. Rutner, Weidlinger Associates, Inc., USA	342
11.1	Introduction	342
11.2	Design specifications	342
11.3	Objectives	344
11.4	Simulation and experiment	344
11.5	Modeling	345
11.6	Results and discussion	355
11.7	Observed failure mechanisms	360
11.8	Mitigation of the failure mechanisms	361

	Contents	ix
11.9	Comparative investigation of performance and residual capacity of the load bearing column	369
11.10	Establishing parameters affecting blast resistance of columns	371
11.11	Summary and conclusions	371
11.12	Acknowledgements	372
11.13	References	373
12	Retrofitting using fiber-reinforced polymer (FRP) polymer composites for blast protection of buildings G. S. URGESSA, George Mason University, USA	375
12.1	Introduction	375
12.2	Retrofitting structures for blast protection and the	
	advantages of fiber-reinforced polymer (FRP) composite retrofits	376
12.3	The history of fiber-reinforced polymer (FRP)	570
12.0	composites as retrofits for out-of-plane loadings	378
12.4	Full scale blast testing of fiber-reinforced polymer (FRP)	
	retrofitted masonry walls	381
12.5	Fiber-reinforced polymer (FRP) connection systems	384
12.6	Equivalent non-linear single degree of freedom model	
	for fiber-reinforced polymer (FRP) retrofitted structures	385
12.7	Resources for fiber-reinforced polymer (FRP) composites	387
12.8	References	387
13	Retrofitting to improve the blast response of	
	masonry walls	390
	L. MORADI, University of Alabama at Birmingham, USA	
13.1	Introduction	390
13.2	Types of masonry walls	391
13.3	Blast load	391
13.4	Finite element models	393
13.5	Resistance function approach	396
13.6	Response model development	406
13.7	Summary	408
13.8	Notation	409
13.9	References	410
	Index	413