
Chapman & Hall/CRC Computational Science Series

the Simulation of Dynamics Using Simulink®

Michael A. Gray

A CHAPMAN & HALL BOOK

Table of Contents

Preface, xv

C۲	HAPTER	: 1 ■ In	troduction and Motivation	1
	1.1	SYSTE	MS	2
		1.1.1	Examples of Systems	3
		1.1.2	Classifying Systems	4
	1.2	DYNA	MICAL MODELS OF PHYSICAL SYSTEMS	4
		1.2.1	Discrete-Time Models	5
		1.2.2	Continuous Models	5
	1.3	CONS	STRUCTING SIMULATIONS FROM DYNAMICAL	
	MODELS			5
		1.3.1	Block-Diagram Models	6
		1.3.2	Block-Diagram Simulations	7
	1.4	HOW	SIMULATORS ARE USED	7
	1.5	SUMN	MARY	8
	REFE	RENCE	s and additional reading	8
C۲	НАРТЕБ	2 ■ Tŀ	ne Basics of Simulation in Simulink	11
2.1 SIMPLEST MODEL TO SIMULATE				
		2.1.1	The Feedforward Block Diagram	13
	2.2	MOD	els in simulink	13
		2.2.1	Documenting a Model	13
	2.3	SIMU	LATION OF THE SIMPLEST MODEL	16
		2.3.1	Output Blocks from the Sinks Library	16

vii

viii Table of Contents

		2.3.1.1 The Scope Block	17
	2.3.2	Input Blocks from the Sources Library	20
		2.3.2.1 The Constant Block	22
	2.3.3	Block Connections	23
	2.3.4	Running the Simulation	24
		2.3.4,1 The Configuration Parameters	24
		2.3.4.2 Observing the Simulation Output	24
		2.3.4.3 Default Ranges and Autoscale	26
		2.3.4.4 Making the Scope Output Printable	27
2.4		ERSTANDING HOW TIME IS HANDLED IN	
		LATION	27
2.5	A MO	DEL WITH TIME AS A VARIABLE	28
	2.5.1	The Clock Block from the Sources Library	29
	2.5.2	Processing Blocks from the Math Operations Library	31
		2.5.2.1 The Product Block	31
		2.5.2.2 The Add Block	32
2.6	HOW	SIMULINK PROPAGATES VALUES IN BLOCK	
	DIAG	RAMS	35
2.7	A MC	del with uniform circular motion	38
	2.7.1	The Sine Wave Block from the Sources Library	40
	2.7.2	The Gain Block from the Math Operations Library	41
	2.7.3	The XY Graph Block from the Sinks Library	44
2.8	A MC	del With spiraling Circular motion	44
	2.8.1	The Math Function Block from the Math Operations Library	45
2.9	UNC	ERTAINTY IN NUMBERS AND SIGNIFICANT	
	FIGU		47
2.10	SUM	MARY	52
REFE	RENCE	es and additional reading	52

CHAPTER	: 3 = Si	mulation of First-Order Difference Equation	
		lodels	55
3.1	WHA	Γ IS A DIFFERENCE EQUATION?	56
	3.1.1	Difference Equation Terminology	56
3.2	EXAM	iples of systems with difference	
	•	ITION MODELS	5 <i>7</i>
3.3	FIRST-	ORDER DIFFERENCE EQUATION SIMULATION	58
	3.3.1	The Input and Output Ports of a Block	58
	3.3.2	The Memory Block from the Discrete Library	61
	3.3.3	The Feedback Block Diagram	62
	3.3.4	The IC Block from the Signal Attributes Library	63
	3.3.5	Setting Initial Conditions with the Initial Conditions Field of the Memory Block	66
3.4	EXAM	nining the internals of a simulation	68
	3.4.1	The Floating Scope Block from the Sinks Library	69
3.5		ORGANIZING THE INTERNAL STRUCTURE OF A SIMULATION	
	3.5.1	The Subsystem Block from the Ports and Subsystems Library	73
3.6	USIN	ING VECTOR AND MATRIX DATA	
	3.6.1	Vector and Matrix Constants	79
	3.6.2	The Display Block from the Sinks Library	81
	3.6.3	Colors for Displaying Scope Vector Input	83
3.7	SUM	MARY	85
REF	ERENCI	es and additional reading	86
Снарте		simulation of First-Order Differential Equation Models	87
4.1		AT IS A DIFFERENTIAL EQUATION?	87
	4.1.1	Differential Equation Terminology	88

x ■ Table of Contents

	EXAM	IPLES OF SYSTEMS WITH DIFFERENTIAL	
	EQUA	TION MODELS	89
4.3	REWO	orking first-order differential	
	EQUA	ITIONS INTO BLOCK FORM	92
4.4		-order differential equation	
	SIMU	LATION	93
	4.4.1	The Integrator Block from the Continuous Library	93
	4.4.2	Specifying Initial Values for First-Order	
		Differential Equation Simulations	94
4.5	SAVIN	NG SIMULATION DATA IN MATLAB	98
	4.5.1	The To Workspace Block from the Sinks Library	99
	4.5.2	Saving Simulation Data in a File	101
4.6	SUMN	AARY	103
REF	ERENCE	es and additional reading	105
Снарт		ixed-Step Solvers and Numerical Integration	
		<u>1ethods</u>	107
5.1		T 10 A COD/ED3	
J.,		T IS A SOLVER?	107
5.2	UND	erstanding the basics of numerical	
_	UND	erstanding the basics of numerical Gration algorithms	108
_	UND	erstanding the basics of numerical	
_	UND	erstanding the basics of numerical Gration algorithms	108
_	UND INTEC 5.2.1	ERSTANDING THE BASICS OF NUMERICAL GRATION ALGORITHMS The Euler Method Taylor's Theorem	108 109
_	UND INTEC 5.2.1 5.2.2 5.2.3	ERSTANDING THE BASICS OF NUMERICAL GRATION ALGORITHMS The Euler Method Taylor's Theorem	108 109 110
5.2	UND INTEC 5.2.1 5.2.2 5.2.3 UND	ERSTANDING THE BASICS OF NUMERICAL GRATION ALGORITHMS The Euler Method Taylor's Theorem A Graphical View of the Euler Method	108 109 110 113
5.2	UND INTEC 5.2.1 5.2.2 5.2.3 UND	ERSTANDING THE BASICS OF NUMERICAL GRATION ALGORITHMS The Euler Method Taylor's Theorem A Graphical View of the Euler Method ERSTANDING SOLVER ERRORS	108 109 110 113 115
5.2	UND INTEC 5.2.1 5.2.2 5.2.3 UND IMPR	ERSTANDING THE BASICS OF NUMERICAL GRATION ALGORITHMS The Euler Method Taylor's Theorem A Graphical View of the Euler Method ERSTANDING SOLVER ERRORS OVING THE BASIC ALGORITHMS	108 109 110 113 115
5.2	UND INTEC 5.2.1 5.2.2 5.2.3 UND IMPR 5.4.1	ERSTANDING THE BASICS OF NUMERICAL GRATION ALGORITHMS The Euler Method Taylor's Theorem A Graphical View of the Euler Method ERSTANDING SOLVER ERRORS OVING THE BASIC ALGORITHMS Runge-Kutta Methods	108 109 110 113 115 118
5.2	UND INTEC 5.2.1 5.2.2 5.2.3 UND IMPR 5.4.1 5.4.2 5.4.3	ERSTANDING THE BASICS OF NUMERICAL GRATION ALGORITHMS The Euler Method Taylor's Theorem A Graphical View of the Euler Method ERSTANDING SOLVER ERRORS OVING THE BASIC ALGORITHMS Runge-Kutta Methods Corrector Methods	108 109 110 113 115 118 119
5.2 5.3 5.4	UND INTEC 5.2.1 5.2.2 5.2.3 UND IMPR 5.4.1 5.4.2 5.4.3 FIXEE	ERSTANDING THE BASICS OF NUMERICAL GRATION ALGORITHMS The Euler Method Taylor's Theorem A Graphical View of the Euler Method ERSTANDING SOLVER ERRORS OVING THE BASIC ALGORITHMS Runge-Kutta Methods Corrector Methods Multistep Methods	108 109 110 113 115 118 119 122

CI	HAPTER	6 ■ Si	mulation of First-Order Equation Systems	133	
	6.1	WHA	IS A FIRST-ORDER DIFFERENCE EQUATION		
		SYSTE		134	
	6.2		PLES OF FIRST-ORDER DIFFERENCE		
		•	tion systems	134	
	6.3		ATING A FIRST-ORDER DIFFERENCE	125	
		•	TION SYSTEM	135	
		6.3.1	The Two-Input Scope Block	135	
		6.3.2	Algebraic Loops	136	
	6.4		IS A FIRST-ORDER DIFFERENTIAL EQUATION	1 40	
		SYSTE		143	
	6.5		IPLES OF FIRST-ORDER DIFFERENTIAL	144	
		•	TION SYSTEMS	144	
	6.6		LATING A FIRST-ORDER DIFFERENTIAL TION SYSTEM	144	
	6.7	•	BINING CONNECTIONS ON A BUS	148	
	0.7	6.7.1	The Bus Creator Block from the Signals Routing	170	
		6.7.1	Library	149	
	6.8	SUMN	•	152	
			AND ADDITIONAL READING	153	
	IXLIL	KINCLJ	TAND ADDITIONAL READING	155	
C	HAPTER	. 7 = Si	imulation of Second-Order Equation Models:		
			ionperiodic Dynamics	155	
	7.1	SIMU	LATION OF SECOND-ORDER DIFFERENCE		
		EQUATION MODELS			
		7.1.1	Sequential Structure	156	
		7.1.2	Layered Structure	158	
	7.2	SIMULATION OF SECOND-ORDER DIFFERENTIAL			
		EQUA	ATION MODELS	160	
		7.2.1	Sequential Structure	162	
		7.2.2	Layered Structure	164	
	7.3	SECO	ND-ORDER DIFFERENTIAL EQUATION		
			ELS WITH FIRST-ORDER TERMS	168	

xii ■ Table of Contents

		7.3.1	Viscosit Velocity	y Modeled by a Linear Function of	168	
		7.3.2	•	y Modeled by a Quadratic Function of		
			Velocity		171	
	7.4	CONI	DITIONA	IL DYNAMICS	176	
		7.4.1	Object I	Moving at the Earth's Surface	176	
			7.4.1.1	The Switch Block from the Signal Routing Library	180	
			7.4.1.2	The Zero-Order Hold Block from the Discrete Library	182	
			7.4.1.3	The If Action Subsystem from the Ports & Subsystems Library	183	
			7.4.1.4	The If Block from the Ports & Signals Library	183	
			7.4.1.5	The Merge Block from the Signal Routing Library	183	
	<i>7</i> .5	SUMN	<i>A</i> ARY	·	187	
	REFE	RENCE	S AND A	ADDITIONAL READING	187	
_						
_	HAPTER			on of Second-Order Equation Models:	4.00	
_				Dynamics	189	
	8.1		TAL SYST		189	
		8.1.1		witational Attraction between Two Objects	189	
		8.1.2		th-Sun System	190	
		8.1.3	Circula	r Orbits	192	
		8.1.4	The Ear	th–Satellite System	197	
	8.2	MASK	ED SUB	SYSTEMS	200	
		8.2.1	A Simpl	le Example	201	
		8.2.2	Parame	terizing the Subsystem Components	202	
		8.2.3	Creatin	g the Subsystem Mask	204	
	8.3	CREATING LIBRARIES			206	
	8.4	SUMN	иARY		212	
		EFERENCES				

CHAPTER	9 - H	igher-Order Models and Variable-Step		
		blvers	217	
9.1	DIREC	T SIMULATION BY MULTIPLE INTEGRATIONS	217	
	9.1.1	An Automobile Suspension Model	218	
	9.1.2	The Terminator Block from the Sinks Library	218	
	9.1.3	Transformation into a First-Order Equation System	221	
9.2	PROD	UCING FUNCTION FORMS FOR SIMULATION		
RESULTS				
9.3	VARIA	BLE-STEP SOLVERS	225	
	9.3.1	Example Variable-Step-Size Algorithm	226	
	9.3.2	Example Variable-Step, Fourth-Order Runge-		
		Kutta Solver	226	
9.4	VARIA	BLE-STEP SOLVERS IN SIMULINK	218 218 221 N 222 225 226 228 229 al 231 235 237 240 243	
9.5	SUMN	AARY	228	
REFE	RENCE:	s and additional reading	229	
Сылртей	> 1∩ ■ 4	Advanced Topics: Transforming Ordinary		
CHAPTER		Differential Equations, Simulation of		
		Chaotic Dynamics, and Simulation of Partial		
		Differential Equations	231	
10.1		SFORMING ORDINARY DIFFERENTIAL		
	EQUA	TIONS	231	
	10.1.1	The Laplace Transform	235	
	10.1.2	A Laplace Transform Example	237	
	10.1.3	Simulation by Nested Transforms	240	
	10.1.4	Simulation by Partitioned Transforms	243	
•	10.1.5	The Transfer Fcn Block from the Continuous		
		Library	247	
	10.1.6	Examples of Transfer Function Simulation	247	
		10.1.6.1 Impulse-Driven Spring	247	
		10.1.6.2 Analog Signal Filter	250	
		10.1.6.3 Disk Drive Motion under Control	251	

xiv ■ Table of Contents

10	.2 SIMU	LATION OF CHAOTIC DYNAMICS	253
	10.2.1	Example of a Chaotic System—the Lorenz Model	254
	10.2.2	The Logistic Map	257
10	.3 SIMU	LATION OF PARTIAL DIFFERENTIAL	
	EQUA	TIONS	264
	10.3.1	What Is a Partial Differential Equation?	264
	10.3.2	Examples of Systems with Partial Differential Equation Models	265
	10.3.3	Simulating Partial Differential Equation Models	267
	10.3.4	The Embedded MATLAB Function Block from the User-Defined Functions Library	269
10	.4 SUMN	·	276
		s and additional reading	278
APPE	NDIX A: /	ALPHABETICAL LIST OF SIMULINK BLOCKS, 28	1
	NDIX B: 1 S, 283	the basics of matlab for simulink	
B.1	THE N	MATLAB MAIN WINDOW	283
B.2	THE C	DEFAULT FOLDER IN MATLAB	284
В.3	LAUN	CHING SIMULINK FROM MATLAB	285
B.4	i simui	INK MODEL FILES IN MATLAB	285
RE	FERENCE	s and additional reading	288
APPE	NDIX C: I	DEBUGGING A SIMULINK MODEL, 289	
C.1	START	ING THE DEBUGGER	289
C.2	RUNN	ING THE MODEL IN STEP MODE	291
C.3	RUNN	IING THE MODEL IN TRACE MODE	299
ΑC	DITION	al reading	300

INDEX, 301