International Student Edition

Contents

Preface	xv		2.5	Impact Structures	3!
			2.6	Closing Remarks	38
				Additional Reading	38
PART	A FUNDAMENTALS	1			
		_	3	Force and Stress	40
1	Overview	2	3.1	Introduction	40
	Industrial and	_	3.2	Units and Fundamental Quantities	42
1.1	Introduction	2	3.3	Force	43
1.2	Classification of Geologic Structures	4	3.4	Stress	44
1.3	Stress, Strain, and Deformation	6	3.5	Two-Dimensional Stress: Normal Stress and	
1.4	Structural Analysis and Scales of Observation	8		Shear Stress	44
1.5 1.6	Some Guidelines for Structural Interpretation	10	3.6	Three-Dimensional Stress: Principal Planes	
1.6	Closing Remarks	12		and Principal Stresses	45
	Additional Reading	12	3.6.1	Stress at a Point	46
2	Primary and Mantagtonia		3.6.2	The Components of Stress	48
L	Primary and Nontectonic		3.6.3	Stress States	47
	Structures	14	3.7	Deriving Some Stress Relationships	48
2.1	Introduction	14	3.8	Mohr Diagram for Stress	49
2.2	Sedimentary Structures	14	3.8.1	Constructing the Mohr Diagram	50
2.2.1	The Use of Bedding in Structural Analysis	16	3.8.2	Some Common Stress States	51
2.2.2	Graded Beds and Cross Beds	17	3.9	Mean Stress and Deviation Stress	52
2.2.3	Surface Markings	19	3.10	The Stress Tensor	53
2.2.4	Disrupted Bedding	19	3.11	A Brief Summary of Stress	54
2.2.5	Conformable and Unconformable Contacts	19	3.12	Stress Trajectories and Stress Fields	55
2.2.6	Compaction and Diagenetic Structures	23	3.13	Methods of Stress Measurement	56
2.2.7	Penecontemporaneous Structures	24	3.13.1	Present-Day Stress	56
2.3	Salt Structures	26	3.13.2	Paleostress	57
2.3.1	Why Halokinesis Occurs	26	3.13.3	Stress in Earth	57
2.3.2	Geometry of Salt Structures and Associated		3.14	Closing Remarks	60
	Processes	27		Additional Reading	60
2.3.3	Gravity-Driven Faulting and Folding	29	_		
2.3.4	Practical Importance of Salt Structures	30	4	Deformation and Strain	62
2.4	Igneous Structures	30	4.1	Introduction	62
2.4.1	Structures Associated with Sheet Intrusions	31	4.2	Deformation and Strain	63
2.4.2	Structures Associated with Plutons	32	4.3	Homogenous Strain and the Strain Ellipsoid	65
2.4.3	Structures Associated with Extrusion	33	4.4	Strain Path	66
2.4.4	Cooling Fractures	35	4.5	Coaxial and Non-Coaxial Strain Accumulation	67
			1		

4.6	Superimposed Strain	69	PART I	B BRITTLE STRUCTURES	113
4.7	Strain Quantities	70		DINITEE STREET GREET	110
4.7.1	Longitudinal Strain	70	6	Brittle Deformation	114
4.7.2	Volumetric Strain	71	{	Director de l'origination	
4.7.3	Angular Strain	71	6.1	Introduction	114
4.7.4	Other Strain Quantities	71	6.2	Vocabulary of Brittle Deformation	114
4.8	The Mohr Circle for Strain	73	6.3	What is Brittle Deformation?	117
4.9	Strain States	75	6.4	Tensile Cracking	118
4.10	Representation of Strain	75	6.4.1	Stress Concentration and Griffith Cracks	118
4.10.1	Orientation	75	6.4.2	Exploring Tensile Crack Development	121
4.10.2	Shape and Intensity	76	6.4.3	Modes of Crack-Surface Displacement	122
4.11	Finite Strain Measurement	78	6.5	Processes of Brittle Faulting	123
4.11.1	What Are We Really Measuring in Strain Analysis	79	6.5.1	Slip by Growth of Fault-Parallel Veins	123
4.11.2	Initially Spherical Objects	81	6.5.2	Cataclasis and Cataclastic Flow	123
4.11.3	Initially Nonspherical Objects	82	6.6	Formation of Shear Fractures	124
4.11.3.1	Center-to-Center Method	83	6.7	Predicting Initiation of Brittle Deformation	126
4.11.3.2	R_f/Φ method	83	6.7.1	Tensile Cracking Criteria	126
4.11.4	Objects with Known Angular Relationships or		6.7.2	Shear-Fracture Criteria and Failure Envelopes	127
	Lengths	84	6.8	Frictional Sliding	132
4.11.4.1	Angular Changes	84	5.8.1	Frictional Sliding Criteria	132
4.11.4.2	Length Changes	85	6.8.2	Will New Fractures Form or Will Existing	
4.11.5	Rock Textures and Other Strain Guages	86		Fractures Slide?	133
4.11.6	What Do We Learn from Strain Analysis?	87	6.9	Effect of Environmental Factors in Failure	134
4.12	Closing Remarks	89	6.9.1	Effect of Fluids on Tensile Crack Growth	134
	Additional Reading	89	6.9.2	Effect of Dimensions on Tensile Strength	136
			6.9.3	Effect of Pore Pressure on Shear Failure and	
5	Rheology	90		Frictional Sliding	136
5.1	Introduction	90	6.9.4	Effect of Intermediate Principal Stress	
5.1.1	Strain Rate	91		on Shear Rupture	136
5.2	General Behavior: The Creep Curve	92	6.10	Closing Remarks	136
5.2 5.3	Rheologic Relationships	93		Additional Reading	137
5.3.1	Elastic Behavior	93			
5.3.2	Viscous Behavior	96	7	Joints and Veins	138
5,3.3	Viscelastic Behavior	97	7.1	Introduction	138
5.3.4	Elastico-Viscous Behavior	97	7.2	Surface Morphology of Joints	140
5.3.5	General Linear Behavior	98	7.2.1	Plumose Structure	140
5.3.6	Nonlinear Behavior	98	7.2.2	Why Does Plumose Structure Form?	141
5.4	Adventures with Natural Rocks	100	7.2.3	Twist Hackle	144
5.4.1	The Deformation Apparatus	101	7.3	Joint Arrays	144
5.4.2	Confining Pressure	102	7.3.1	Systematic versus Nonsystematic Joints	144
5.4.3	Temperature	103	7.3.2	Joint Sets and Joint Systems	145
5.4.4	Strain Rate	104	7.3.2	Cross-Cutting Relations Between Joints	145
5.4.5	Pore-Fluid Pressure	105	7.3.4	Joint Spacing in Sedimentary Rocks	147
5.4.6	Work Hardening—Work Softening	106	7.4	Joint Studies in the Field	149
5.4.7	Significance of Experiments to	100	7.4.1	Dealing with Field Data About Joints	150
	Natural Conditions	107	7.5	Origin and Interpretation of Joints	152
5.5	Confused by the Terminology?	108	7.5.1	Joints Related to Uplift and Unroofing	152
5.6	Closing Remarks	111	7.5.2	Formation of Sheeting Joints	152
	Additional Reading	112	7.5,3	Natural Hydraulic Fracturing	154
	•				,

7.5.4 7.5.5	Joints Related to Regional Deformation Orthogonal Joint Systems	155 156	PART	C DUCTILE STRUCTURES	203
7.5.6	Conjugate Joint Systems	157	0	Dustile Defermation Brossess	20.4:
7.5.7	Joint Trend as Paleostress Trajectory	158	9	Ductile Deformation Processes	404
7.6	Limits on Joint Growth	158	9.1	Introduction	204
7.7	Veins and Vein Arrays	159	9.2	Cataclastic Flow	206
7.7.1	Formation of Vein Arrays	160	9.3	Crystal Defects	207
7.7.2	Vein Fill: Blocky and Fibrous Veins	160	9.3.1	Point Defects	207
7.7.3	Interpretation of Fibrous Veins	162	9.3.2	Line Defects or Dislocations	207
7.8	Lineaments	163	9.4	Crystal Plasticity	210
7.9	Closing Remarks	163	9.4.1	Dislocation Glide	210
	Additional Reading	165	9.4.2	Cross-Slip and Climb	210
			9.4.3	Mechanical Twinning	213
8	Faults and Faulting	166	9.4.4	Strain-Producing versus Rate-Controlling	
8.1	Introduction	166		Mechanisms	216
8.2	Fault Geometry and Displacement	169	9.4.5	Where Do Dislocations Come	
8.2.1	Basic Vocabulary	169		From?	216
8.2.2	Representation of Faults on Maps and Cross	105	9.5	Diffusional Mass Transfer	217
0,2.2	Sections	172	9.5.1	Volume Diffusion and Grain-Boundary	245
8.2.3	Fault Separation and Determination	~, -	0.5.3	Diffusion	218
0.2.5	of Net Slip	174	9.5.2 9.6	Pressure Solution	218
8.2.4	Fault Bends	176	9.8 9.7	Constitutive Equations or Flow Laws	219
8.2.5	Fault Terminations and Fault Length	177	9.7	A Microstructural View of Laboratory Behavior	220
8.3	Characteristics of Faults and Fault Zones	179	9.8	***	220 221
8.3.1	Brittle Fault Rocks	179	9.9	Imaging Dislocations Deformation Microstructures	222
8.3.2	Slickensides and Slip Lineations	182	9.9.1	Recovery	222
8.3.3	Subsidiary Fault and Fracture Geometries	184	9.9.2	Recrystallization	225
8.3.4	Fault-Related Folding	184	9.9.3	Mechanisms of Recrystallization	226
8.3.5	Shear-Sense Indicators of Brittle Faults—		9.9.4	Superplastic Creep	228
	A Summary	187	9.10	Deformation Mechanism Maps	229
8.4	Recognizing and Interpreting Faults	187	9.10.1	How to Construct a Deformation Mechanism	
8.4.1	Recognition of Faults from Subsurface Data	189		Мар	232
8.4.2	Changes in Fault Character with Depth	190	9.10.2	A Note of Caution	233
8.5	Relation of Faulting to Stress	191	9.11	Closing Remarks	234
8.5.1	Formation of Listric Faults	192		Additional Reading	234
8.5.2	Fluids and Faulting	192		Appendix: Dislocation Decoration	236
8.5.3	Stress and Faulting—A Continuing Debate	193			
8.6	Fault Systems	195	10	Folds and Folding	238
8.6.1	Geometric Classification of Fault Arrays	195		J	
8.6.2	Normal Fault systems	196	10.1	Introduction	238
8.6.3	Reverse Fault Systems	196	10.2	Anatomy of a Folded Surface	239
8.6.4	Strike-Slip Fault Systems	197	10.2.1	Fold Facing: Antiform, Synform, Anticline,	244
8.6.5 o.c.c	Inversion of Fault Systems	197	40.0	and Syncline	241
8.6.6	Fault Systems and Paleostress	197	10.3	Fold Classification	243
8.7 8.7.1	Faulting and Society	198	10.3.1	Fold Orientation	244
8.7.1 8.7.2	Faulting and Resources	199	10.3.2	Fold Shape in Profile	245
8.8	Faulting and Earthquakes	199	10.4	Fold Systems	246
0.0	Closing Remarks	201	10.4.1	The Enveloping Surface	247
	Additional Reading	201	10.4.2	Folds Symmetry and Fold Vergence	248

			}		
10.5	Some Special Fold Geometries	250	12.3	Shear-Sense Indicators	298
10.6	Superposed Folding	252	12.3.1	Plane of Observation	298
10.6.1	The Priciple of Fold Superposition	252	12.3.2	Grain-Tail Complexes	299
10.6.2	Fold Interference Patterns	254	12.3.3	Fractured Grains and Mica Fish	299
10.6.3	Fold Style	255	12.3.4	Foliations: C-S and C-C'	
10.6.4	A Few Philosophical Points	257		Structures	302
10.7	The Mechanics of Folding	257	12.3.5	A Summary of Shear-Sense	
10.7.1	Passive Folding and Active Folding	257		Indicators	303
10.7.2	Buckle Folds	259	12.4	Strain in Shear Zones	304
10.7.3	Folded Multilayers	262	12.4.1	Rotated Grains	304
10.8	Kinematic Models of Folding	262	12.4.2	Deflected Foliations	305
10.8.1	Flexural Slip/Flow Folding	262	12.5	Textures or Crystallographic-Preferred Fabrics	307
10.8.2	Neutral-Surface Folding	563	12.5.1	The Symmetry Principle	308
10.8.3	Shear Folding	264	12.5.2	Textures as Shear-Sense Indicators	310
10.8.4	Fold Shape Modification	265	12.6	Fold Transposition	311
10.8.5	A Natural Example	265	12.6.1	Sheath Folds	313
10.9	A Possible Sequence of Events	266	12.7	Closing Remarks	313
10.10	Closing Remarks	268		Additional Reading	315
	Additional Reading	269		.	
			13	Deformation, Metamorphism,	
11	Fabrics: Foliations			and Time	316
	and Lineations	270	13.1		
			13.1	Introduction	316
11.1	Introduction	270	1	Field Observations and Study Goals	316
11.2	Fabric Terminology	270	13.3	Pressure and Temperature	319
11.3	Foliations	272	13.3.1	Status Report I	321
11.3.1	What is Cleavage?	273	13.4	Deformation and Metamorphism	322
11.3.2	Disjunctive Cleavage	274	13.4.1	Status Report II	324
11.3.3	Pencil Cleavage	277	13.5	Time	325
11.3.4	Slaty Cleavage	278	13.5.1	The Isochron Equation	325
11.3.5	Phyllitic Cleavage and Schistosity	278	13.5.2	The Isotopic Closure Temperature	327
11.3.6	Crenulation Cleavage	280	13.5.3	Dating Deformation	328
11.3.7	Gneissic Layering and Migmatization	282	13.5.4	Status Report III	329
11.3,8	Mylonitic Foliation	284	13.6	D-P-T-t Paths	329
11.4	Cleavage and Strain	284	13.6.1	Temperature-Time $(I \cdot t)$ History	331
11.5	Foliations in Folds and Fault Zones	285	13.6.2	Pressure Temperature (P-T) History	331
11.6	Lineations	288	13.6.3	Pressure-Time (<i>P-t</i>) History	331
11.6.1	Form Lineations	288	13.6.4	The Geothermal Gradient	331
11.6.2	Surface Lineations	289	13.6.5	The Deformational Setting	333
11.6.3	Mineral Lineations	290	13.7	Closing Remarks	333
11.6.4	Tectonic Interpretation of Lineations	290		Additional Reading	333
11.7	Other Physical Properties of Fabrics	292	}		
11.8	Closing Remarks	292			
	Additional Reading	293	PART	D TECTONICS	335
12	Ductile Shear Zones, Textures,		14	Whole-Earth Structure and	
	and Transposition	294			336
12.1	Introduction	294	14.1	Introduction	336
12.2	Mylonites	296	14.2	Studying Earth's internal Layering	337
12.2.1	Type Mylonites	297	14.3	Seismically Defined Layers of the Earth	337
± 1- 1 1- 7 ±	- apo ingronico	J. J I	1 1.0	seignicand perined rayers of the raidi	751

			I		
14.4	The Crust	342	16.3	Cordilleran Metamorphic Core Complexes	390
14.4.1	Oceanic Crust	342	16.4	Formation of a Rift System	394
14.4.2	Continental Crust	342	16.5	Controls on Rift Orientation	396
14.4.3	The Moho	348	16.6	Rocks and Topographic Features of Rifts	397
14.5	The Mantle	348	16.6.1	Sedimentary-Rock Assemblages in Rifts	397
14.5.1	Internal Structure of the Mantle	348	16.6.2	Igneous-Rock Assemblage of Rifts	397
14.5.2	Mantle Plumes	350	16.6.3	Active Rift Topography and Rift-Margin Uplifts	399
14.6	The Core	350	16.7	Tectonics of Midocean Ridges	402
14.7	Defining Earth Layers Based on Rheologic		16.8	Passive Margins	405
	Behavior	350	16.9	Causes of Rifting	408
14.7.1	The Lithosphere	351	16.10	Closing Remarks	410
14.7.2	The Asthenosphere	353		Additional Reading	410
14.7.3	Isostasy	353	47		
14.8	The Tenets of Plate Tectonics Theory	355	17	Convergence and Collision	412
14.9	Basic Plate Kinematics	359	17.1	Introduction	412
14.9.1	Absolute Plate Velocity	359	17.2	Convergent Plate Margins	414
14.9.2	Relative Plate Velocity	360	17.2.1	The Downgoing Slab	415
14.9.3	Using Vectors to Describe Relative Plate	254	17.2.2	The Trench	418
14.9.4	Velocity	361	17.2.3	The Accretionary Prism	420
14.9.4	Triple Junctions	364	17.2.4	The Forearc Basin and	-
14.11	Plate-Driving Forces	364		the Volcanic Arc	424
14.12	The Supercontinent Cycle Closing Remarks	366 367	17.2.5	The Backarc Region	425
14.12	Additional Reading	367	17.2.6	Curvature of Island Arcs	428
	Additional Reading	307	17.2.7	Coupled versus Uncoupled Convergent	
				Margins	428
15	Geophysical Imaging of the		17.3	Basic Stages of Collisional Tectonics	429
	Continental Lithosphere—		17,3.1	Stage 1: Precollision and Initial Interaction	431
	An Essay by Frederick A. Cook	368	17.3.2	Stage 2: Abortive Subduction and Suturing	433
	-		17.3.3	Stage 3: Crustal Thickening and Extensional	
15.1	Introduction	368		Collapse	435
15.2	What is Seismic Imaging?	368	17.4	Other Consequences of Collisional Tectonics	436
15.3	How are Data Interpreted?	370	17.4.1	Regional Strike-Slip Faulting	
15.4	Some Examples	370		and Lateral Escape	436
15.5	The Crust—Mantle Transition	372	17.4.2	Plateau Uplift	438
15.6	The Importance of Regional Profiles—		17.4.3	Continental Interior Fault-and-Fold Zones	438
45 3	Longer, Deeper, More Detailed	374	17.4.4	Crustal Accretion (Accetionary Tectonics)	440
15.7 15.8	An Example from Northwestern Canada	375	17.4.5	Deep Structure of Collisional	
15.9	Other Geophysical Techniques	379		Orogens	442
13.3	Closing Remarks	381	17.5	Insights from Modeling Studies	442
	Additional Reading	381	17.6	Closing Remarks	443
				Additional Reading	443
16	Rifting, Seafloor Spreading,				
	and Extensional Tectonics	382	18	Fold-Thrust Belts—An Essay	
16.1	_ _			by Stephen Marshak and	
16.2	Introduction	382		M. Scott Wilkerson	444
16.2.1	Cross-Sectional Structure of a Rift	385			
16.2.2	Normal Fault Systems	385	18.1	Introduction	444
~V.L.L	Pure-Shear versus Simple-Shear Models		18.2	Fold-Thrust Belts in a Regional Context	448
16.2.3	of Rifting	389	18.2.1	Tectonic Settings of Fold-Thrust Belts	448
-V.L.J	Examples of Rift Structure in Cross Section	389	18.2.2	Mechanical Stratigraphy	452

18.3	Geometry of Thrusts and Thrust Systems	452	21	Eastern Hemisphere	509
18.3.1	A Cross-Sectional Image of a Thrust Fault	452	21.1	The Tectonic Evolution of the European Alps	
18.3.2	Thrust Systems	455		and Forelands—An Essay by Stefan M. Schmid	510
18.3.3	Overall Fold-Thrust Belt Architecture	457	21.1.1	Introduction	510
18.4	Thrust-Related Folding	459	21.1.2	The Major Tectonic Units of the European Alps	510
18.5	Mesoscopic- and Microscopic-Scale Strain	ACE	21.1.3	The Major Paleogeographic Units of the Alps	512
400	in Thrust Sheets	465	21.1.4	Three Alpine Transects and Their Deep Structure	514
18.6	Fold-Thrust Belts in Map View	465	21.1.5	Inferences Concerning Rheologic Behavior	517
18.7	Balanced Cross Sections	468	21.1.6	Evolution of the Alpine System and Its	
18.8	Mechanics of Fold-Thrust Belts	470		Forelands in Time Slices	517
18.9	Closing Remarks	474	21.1.7	Recent Movements in the Upper Rhine Graben	522
	Additional Reading	474	21.1.8	Closing Remarks	523
40	Carilea Clin Tantonian	476		Additional Reading	524
19	Strike-Slip Tectonics	460	21.2	The Tibetan Plateau and Surrounding Regions—	
19.1	Introduction	476		An Essay by Leigh H. Royden and B. Clark Burchfiel	525
19.2	Transform versus Transcurrent Faults	479	21.2.1	Introduction	525
19.2.1	Transform Faults	479	21.2.2	Precollisional History	525
19.2.2	Transcurrent Faults	481	21.2.3	Postcollisional Convergent Deformation	527
19.3	Structural Features of Major Continental		21.2.4	Crustal Shortening and Strike-Slip Faulting	530
	Strike-Slip Faults	482	21.2.5	Extension of the Tibetan	
19.3.1	Description of Distributed Deformation			Plateau	532
	in Strike-Slip Zones	482	21.2.6	Closing Remarks	533
19.3.2	The Causes of Structural Complexity			Additional Reading	533
	in Strike-Slip Zones	484	21.3	Tectonics of the Altaids: An Example of	
19.3.3	Map-View Block Rotation in Strike-Slip Zones	487		a Turkic-type Orogen—An Essay By	
19.3.4	Transpression and Transtension	487	1	A. M. Cêlal Şengőr and Boris A. Natal'in	535
19.3.5	Restraining and Releasing Bends	490	21.3.1	Introduction	535
19.3.6	Strike-Slip Duplexes	492	21.3.2	The Present Structure	
19.3.7	Deep-Crustal Strike-Slip Fault Geometry	492		of the Altaids	538
19.4	Tectonic Setting of Continental Strike-Slip Fault	s 493	21.3.3	Evolution of the Altaids	539
19.4.1	Oblique Convergence and Collision	493	21.3.4	Implications for Continental	
19.4.2	Strike-Slip Faulting in Fold-Thrust Belts	493		Growth	545
19.4.3	Strike-Slip Faulting in Rifts	493	21.3.5	Closing Remarks	545
19.4.4	Continental Transform Faults	495		Additional Reading	545
19.5	Oceanic Transforms and Fracture Zones	497	21.4	The Tasman Orogenic Belt, Eastern Australia:	
19.6	Closing Remarks	498		An Example of Paleozoic Tectonic Accretion—	
	Additional Reading	498	1	An Essay by David R. Gray and David A.	
			j	Foster	547
			21.4.1	Introduction	547
PART	С		21.4.2	Crustal Structure and Main Tectonic Elements	548
	-		21.4.3	Timing of Deformation and Regional Events	551
REGI	ONAL PERSPECTIVES	501	21.4.4	Mechanics of Deformation in Accretionary	
			}	Orogens	554
20	A Global View	502		Additional Reading	555
20.1	Introduction	502	22	Western Hemisphere	556
20.2	Global Deformation Patterns	503	[•	
20.3	What Can We Learn from Regional Perspectives	? 504	22.1	The North American Cordillera—An Essay by	
20.4	Some Speculation on Contrasting Grogenic Style	s 506	1	Elizabeth L. Miller	557
20.5	Closing Remarks and Outline	507	22.1.1	Introduction	557
	Additional Reading	508	22.1.2	Precambrian and Paleozoic History	558

		ı			
22.1.3	Mesozoic History	559	22.5.5	Early Ordovician Breakup of the Northwest	
22.1.4	Cenozoic History	560		Margin of Gondwana	599
22.1.5	Closing Remarks	564	22.5.6	Middle-Late Ordovician Subduction,	
	Additional Reading	565		Continental Fragmentation, and Collisions	600
22.2	The Cascadia Subduction Wedge: The Role of		22.5.7	Middle Ordovician—Silurian Closure of the	
	Accretion, Uplift, and Erosion—An Essay			Eastern lapetus Ocean	601
	by Mark T. Brandon	566	22.5.8	Late Ordovician Icehouse	603
22.2.1	Introduction	566	22,5,9	Ordovician-Silurian Magmatic Arcs Elsewhere	
22.2.2	Accretionary Flux	566		in Europe	604
22.2.3	Wedges, Taper, and Stability	567	22.5.10	Postorogenic Continental Sedimentation and	
22.2.4	Double-Sided Wedges	567		Igneous Activity	605
22.2.5	Subduction Polarity and Pro-Side Accretion	568	22.5.11	Closing Remarks	605
22.2.6	The Cascadia Subduction Zone	569		Additional Reading	606
22.2.7	Comparison between the Cascadia and Alpine		22.6	Tectonic Genealogy of North America—	
	Wedges	574		An Essay by Paul F. Hoffman	607
	Additional Reading	574	22.6,1	Introduction	607
22.3	The Central Andes: A Natural Laboratory		22.6.2	Phanerozoic (545-0 Ma) Orogens and Pangea	608
	for Noncollisional Mountain Building—		22.6.3	Neoproterozoic (1000-545 Ma) Orogens	
	An Essay by Richard W. Allmendinger			and Gondwanaland	608
	and Teresa E. Jordan	575	22.6.4	Mesoproterozoic (1600-1000 Ma) Orogens	
22.3.1	Introduction	575		and Rodinia	609
22.3.2	The Andean Orogeny	575	22.6.5	Paleoproterozoic (2500-1600 Ma) Collisional	
22.3.3	Late Cenozoic Tectonics of the Andes	577		Orogens and Nuna	610
22.3.4	Crustal Thickening and Lithospheric Thinning	580	22.6.6	Paleoproterozoic Accretionary Orogens Add	
22.3.5	Closing Remarks	581		to Nuna	611
	Additional Reading	581	22.6.7	Archean Cratons and Kenorland	612
22.4	The Appalachian Orogen—An Essay by		22.6.8	Closing Remarks	613
	James P. Hibbard	582		Additional Reading	613
22.4.1	Introduction	582	22.7	Phanerozoic Tectonics of the United States	
22.4.2	Overview	582		Midcontinent	615
22.4.3	Tectonic Components	583	22.7.1	Introduction	615
22.4.4	Assembly	587	22.7.2	Classes of Structures in the Midcontinent	616
22.4.5	Closing Remarks	591	22.7.3	Some Causes of Epeirogeny	623
	Additional Reading	591	22.7.4	Speculations on Midcontinent	
22.5	The Caledonides—An Essay by Kevin T. Pickering			Fault-and-Fold Zones	625
	and Alan G. Smith	593	22.7.5	Closing Remarks	626
22.5.1	Introduction	593		Additional Reading	627
22.5.2	Late Precambrian—Cambrian Extension				
22 5 2	and Passive Margins	597		Spherical Projections	628
22.5.3	Late Precambrian—Cambrian Arcs, Northern			Geologic Timescale	631
22 5 4	and Northwestern Gondwana	597	Credits		633
22.5.4	Early-Middle Ordovician Arcs, Marginal Basins,		Index		641
	and Ophiolites	598			
		·			