Editors Haroun N. Shah and Saheer E. Gharbia ## **Contents** | Prefe
List | | ntributors | xix
xxi | | |---------------|---|--|----------------------|--| | Part | I | Microbial Characterisation; the Transition from Conventional Methods to Proteomics | 1 | | | 1 | Changing Concepts in the Characterisation of Microbes and the Infl
of Mass Spectrometry
Haroun N. Shah, Caroline Chilton, Lakshani Rajakaruna, Tom Gaulton,
Gillian Hallas, Hristo Atanassov, Ghalia Khoder, Paulina D. Rakowska,
Eleonora Cerasoli and Saheer E. Gharbia | | | | | | 1.1
1.2 | Background and Early Attempts to Use Mass Spectrometry on Microbes Characterisation of Microorganisms by MALDI-TOF-MS; from Initial Ideas to the Development of the First Comprehensive Database | 3
6 | | | | 1.3 | Characterisation of Microorganisms from Their Intracellular/Membrane Bound Protein Profiles Using Affinity Capture with Particular Reference to Surface-Enhanced Laser Desorption/Ionisation (SELDI)-TOF-MS 1.3.1 A Protein Fingerprinting Platform to Replace SDS-PAGE 1.3.2 A Species-Specific Diagnostic Method | 9
9
11 | | | | 1.4 | 1.3.3 A Biomarker Search Tool Comparative Analysis of Proteomes of Diverse Strains within a Species; Use of 2D Fluorescence Difference Gel Electrophoresis (DIGE) 1.4.1 2D GE 1.4.2 The DIGE Technique | 13
18
18
21 | | | | 1.5 | Nanoparticles as an Alternative Approach in the Analysis and Detection of Low Abundance and Low Molecular Weight Proteins Using MALDI-TOF-MS References | 25
29 | | | 2 | (The | robial Phylogeny and Evolution Based on Protein Sequences
e Change from Targeted Genes to Proteins)
they S. Gupta | 35 | | | | 2.1 | Introduction Bacterial Phylogeny: Overview and Key Unresolved Issues | 35
35 | | | | 2.3 | New Protein-Based Molecular Markers for Systematic and | | |----|-------|---|----| | | | Evolutionary Studies | 37 | | | 2.4 | Molecular Markers Elucidating the Evolutionary Relationships among | | | | | α -Proteobacteria | 41 | | | 2.5 | Molecular Markers for the Bacteroidetes-Chlorobi Phyla | 45 | | | 2.6 | Branching Order and Interrelationships among Bacterial Phyla | 46 | | | 2.7 | Importance of Protein Markers for Discovering Unique Properties for | 10 | | | | Different Groups of Bacteria | 48 | | | 2.8 | Concluding Remarks | 49 | | | | Acknowledgements | 50 | | | | References | 50 | | Pa | rt II | Proteomics Tools and Biomarker Discovery | 55 | | 3 | | rview of Proteomic Tools and Their Links to Genomics | 57 | | | | Misra | | | | 3.1 | Introduction | 57 | | | 3.2 | Protein Identification | 58 | | | | 3.2.1 Peptide Mass Fingerprint (PMF) | 58 | | | | 3.2.2 Peptide Fragment Fingerprint | 60 | | | | 3.2.3 Peptide Sequencing | 62 | | | | 3.2.4 False Discovery Rate (FDR) | 62 | | | | 3.2.5 Validating Protein Identifications | 63 | | | | 3.2.6 Reference Database | 64 | | | | 3.2.7 Data Storage | 65 | | | 3.3 | Applications | 65 | | | | 3.3.1 Biomarker Discovery | 65 | | | | 3.3.2 Integrating Genomics with Proteomics | 67 | | | | References | 68 | | 4 | Tano | dem Mass Spectrometry-Based Proteomics, Protein Characterisation | | | | | Biomarker Discovery in Microorganisms | 73 | | | Min | Fang | | | | 4.1 | Introduction | 73 | | | 4.2 | Mass Spectrometry | 74 | | | | 4.2.1 MALDI Versus ESI | 74 | | | | 4.2.2 Tandem Mass Spectrometry and Hybrid Mass Spectrometers | 75 | | | | 4.2.3 Fragmentation in Tandem Mass Spectrometry | 76 | | | 4.3 | Proteomic Strategies for Protein Identification | 79 | | | | 4.3.1 Bottom-Up Proteomics | 79 | | | | 4.3.2 Top-Down Proteomics | 80 | | | 4.4 | Multidimensional Protein Identification | 81 | | | 4.5 | Mass Spectrometry-Based Targeted Protein Quantification and | | | | | Biomarker Discovery | 82 | | | | 4.5.1 Selected Reaction Monitoring | 84 | | | | | | Contents | ix | |-----|------------|------------------|--|----------|----------| | | 4.6 | Conclu
Refere | | | 86
86 | | 5 | Tech | niques: | ss Spectrometry Imaging, a New Frontier in Biostructu
Applications in Biomedicine
cese and Malcolm R. Clench | ıral | 91 | | | 5.1 | Introdu | uction | | 91 | | | 5.2 | Practic | eal Aspects of MALDI-MSI | | 93 | | | | 5.2.1 | Instrumentation for MALDI-MSI | | 93 | | | 5.3 | Applic | | | 94 | | | | 5.3.1 | Pharmaceuticals | | 94 | | | | 5.3.2 | MALDI-MSI and Medicine | | 95 | | | | 5.3.3 | Biotechnology | | 101 | | | 5.4 | | bial Molecular Investigation by MALDI-TOF-MS | | 104 | | | | 5.4.1 | Microbial MALDI-TOF-MSI | | 104 | | | | 5.4.2 | Microbial Proteomic Characterisation and Classification | ı via | | | | | | MALDI-TOF-MS and MS/MS | | 107 | | | 5.5 | Conclu | | | 112 | | | | Refere | nces | | 113 | | Pai | rt III | Protei | n Samples: Preparation Techniques | | 117 | | 6 | Chro | matogr | l Approaches for Sample Preparation for Liquid aphy and Two-Dimensional Gel Electrophoresis va and Robert Parker | | 119 | | | | | | | | | | 6.1 | Introdu | | | 119 | | | 6.2 | | ysis Methods | | 121 | | | | 6.2.1 | Mechanical Lysis | | 121 | | | | 6.2.2 | Chemical and Osmotic Lysis | | 123 | | | 60 | 6.2.3 | Enzymatic Lysis | | 123 | | | 6.3 | | e Preparation for 2D GE | | 124 | | | | 6.3.1 | Removal of Interfering Substances | | 124 | | | | 6.3.2 | Solubilisation Strategies | | 126 | | | | 6.3.3 | Sample Preparation for Difference in Gel Electrophores | | | | | | e a 1 | (DIGE) | | 127 | | | <i>C</i> 1 | 6.3.4 | Preparation of Environmental Samples | | 129 | | | 6.4 | | onation Strategies | | 130 | | | | 6.4.1 | Surface Associated Proteins | | 130 | | | (5 | 6.4.2 | Secreted Proteins | | 130 | | | 6.5 | _ | e Preparation for Liquid Chromatography coupled with | | 101 | | | | | Spectrometry (LC-MS) Priof Peoleground to Protein Identification by LC MS | | 131 | | | | 6.5.1 | Brief Background to Protein Identification by LC-MS | | 131 | | | | 6.5.2 | Pitfalls of Poor Sample Preparation in LC-MS of Peptic | | 132 | | | | 6.5.3
6.5.4 | General Sample Lysis Consideration | | 132 | | | | 0.54 | Crude Protein Purification | | 133 | | | | 6.5.5 | Protein Resolubilsation and In-Solution Digestion | 134 | |---|---------------------|---------------------|---|-----| | | | 6.5.6 | Protein Digestion | 135 | | | | 6.5.7 | Microscale Clean Up Prior to LC-MS | 137 | | | 6.6 | Conclu | | 138 | | | | Refere | nces | 139 | | 7 | Isola | tion and | l Preparation of Spore Proteins and Subsequent | | | | Cha | racterisa | tion by Electrophoresis and Mass Spectrometry | 143 | | | Nico | la C. The | orne, Haroun N. Shah and Saheer E. Gharbia | | | | 7.1 | Introdu | action | 143 | | | | 7.1.1 | The Model Organism: Bacillus subtilis | 144 | | | | 7.1.2 | Sporulation | 144 | | | | 7.1.3 | The Spore Structure | 144 | | | | 7.1.4 | C. difficile and Disease | 145 | | | | 7.1.5 | Bacterial Spores of Clostridia | 146 | | | 7.2 | Experi | mental | 146 | | | | 7.2.1 | Sporulation Media | 146 | | | | 7.2.2 | | 147 | | | | 7.2.3 | Spore Protein Extraction and Solubilisation | 147 | | | 7.3 | Conch | | 154 | | | | Refere | nces | 154 | | 8 | Com
with
Roge | ibinatior
Mass S | ntion of Bacterial Membrane Proteins Using a Novel of a Lipid Based Protein Immobilization Technique pectrometry on, Darren Chooneea, Elisabet Carlsohn, Vesela Encheva N. Shah | 157 | | | 8.1 | Introdu | Detion | 157 | | | 8.2 | | urface Proteome | 158 | | | 8.3 | | mics of Pathogenic Bacteria | 159 | | | 8.4 | | Based Protein Immobilization Technology | 162 | | | 8.5 | | nella Typhimurium – Disease Mechanism and Outer | | | | | Memb | rane Proteins | 166 | | | 8.6 | Outer | Membrane Proteins of S. Typhimurium | 167 | | | 8.7 | Helico | bacter pylori - Disease Mechanism and Outer | | | | | | rane Proteins | 168 | | | 8.8 | | e Proteins of Intact H. pylori | 170 | | | | Refere | nces | 171 | | 9 | Wid | er Prote | in Detection from Biological Extracts by the Reduction of | | | | | | Concentration Range | 175 | | | Luc | Guerrier | Pier Giorgio Righetti and Egisto Boschetti | | | | 9.1 | Introd | action | 175 | | | 9.2 | | onation as a Means to Decipher Proteome Complexity | 176 | | | | 9.2.1 | Subcellular Fractionation | 177 | | | | | Contents | Xi | |-----|------|--|----------|-----| | | | 9.2.2 Protein Precipitation | | 178 | | | | 9.2.3 Immunoprecipitation | | 178 | | | | 9.2.4 Chromatographic Fractionation | | 179 | | | | 9.2.5 Electrokinetic Methods in Proteome Fractionation | | 180 | | | 9.3 | Dealing with Low Abundance Proteins | | 182 | | | | 9.3.1 Depletion of a Few High Abundance Proteins | | 182 | | | | 9.3.2 Narrow IPG | | 184 | | | | 9.3.3 Reduction of the Dynamic Concentration Range with | | | | | | Combinatorial Ligand Libraries | | 184 | | | 9.4 | Conclusions and Envisioned Outcome | | 198 | | | | Acknowledgements | | 198 | | | | References | | 198 | | 10 | 3D-G | el Electrophoresis – A New Development in Protein Analysis | | 205 | | | | rt Ventzki and Josef Stegemann | | | | | 10.1 | Introduction | | 205 | | | | 10.1.1 State of the Art in Protein Analysis | | 205 | | | | 10.1.2 Innovations by 3D-Gel Electrophoresis | | 206 | | | | 10.1.3 Concept of 3D-Gel Electrophoresis | | 206 | | | 10.2 | Methods | | 208 | | | | 10.2.1 The 3D-Gel Instrument | | 208 | | | | 10.2.2 Thermal Management of the 3D-Gel | | 208 | | | | 10.2.3 Online Detection of Laser-Induced Fluorescence | | 210 | | | | 10.2.4 Casting of the 3D-Gel | | 211 | | | | 10.2.5 Sample Preparation and Fluorescent Labelling | | 211 | | | | 10.2.6 Sample Loading | | 212 | | | | 10.2.7 Image Processing and Data Evaluation | | 214 | | | 10.3 | Results and Discussion | | 216 | | | | 10.3.1 Comparison of 3D-Gel with Standard Slab Gel Separa | tion | 216 | | | | 10.3.2 Applications of 3D-Gel Electrophoresis | | 217 | | | | 10.3.3 Future Developments | | 219 | | | | Acknowledgements | | 219 | | | | References | | 220 | | Par | t IV | Characterisation of Microorganisms by Pattern Matching o | | | | | | Spectral Profiles and Biomarker Approaches Requiring Min | nimal | | | | | Sample Preparation | | 223 | | 11 | | obial Disease Biomarkers Using ProteinChip Arrays | | 225 | | | | Hamilton, Michael Levin, J. Simon Kroll and Paul R. Langford | | | | | 11.1 | Introduction | | 225 | | | 11.2 | Biomarker Studies Involving Patients Infected with Viruses | | 239 | | | | 11.2.1 Hepatitis B and C | | 239 | | | | 11.2.2 Severe Acute Respiratory Syndrome (SARS) | | 240 | | | | 11.2.3 | Human Immunodeficiency Virus (HIV) | 241 | |-----|--|--|--|--| | | | 11.2.4 | Human T-Cell Leukaemia Virus Type-1 (HTLV-1) | 241 | | | | 11.2.5 | BK Virus (BKV) | 242 | | | | 11.2.6 | Cytomegalovirus (CMV) | 242 | | | | 11.2.7 | Porcine Reproductive and Respiratory Disease Syndrome | | | | | | (PRRS) | 243 | | | 11.3 | Biomar | ker Studies Involving Patients Infected with Parasites | 243 | | | | 11.3.1 | Trypanosomiasis | 243 | | | | 11.3.2 | Fasciolosis | 243 | | | 11.4 | | ker Studies Involving Patients Infected with Bacteria | 244 | | | | | Tuberculosis | 244 | | | | 11.4.2 | Infectious Endocarditis | 244 | | | | 11.4.3 | Respiratory Diseases | 245 | | | | 11.4.4 | Intra-Amniotic Infection | 246 | | | | | Bacterial Peritonitis | 248 | | | 11.5 | | Diseases of Possible Infectious Origin | 249 | | | 11. | | Kawasaki Disease | 249 | | | 11.6 | Conclu
Referen | | 249
250 | | | 12.1
12.2
12.3
12.4
12.5
12.6
12.7 | Mass S
Mass S
Reprod
Species
Pattern
Mass S | cation of Microorganisms in Clinical Routine spectrometry and Microbiology spectral 'Fingerprints' of Whole Cells sucibility of Mass Spectral Fingerprints s and Strain Discrimination by Mass Spectrometry Matching Approaches for Automated Identification spectral Identification of Microorganisms – Requirements sitine Diagnostics | 255
256
257
260
261
264 | | | 12.8 | | ated Mass Spectral Analysis of Microorganisms in Clinical | | | | | | e Diagnostics | 267 | | | | | wledgements | 269 | | | | Refere | nces | 270 | | Par | t V | Target | ed Molecules and Analysis of Specific Microorganisms | 277 | | 13 | of Ba
Micr | | | 279 | | | 13.1 | Introdu | action | 279
286 | | | 117 | Scope | | 28t | | | | Content | s xiii | |------------|-------|---|--------| | | 13.3 | Reproducibility | 286 | | | | 13.3.1 Factors Concerning the Sample | 287 | | | | 13.3.2 Factors Concerning the MALDI MS Process | 291 | | | 13.4 | Whole Cell MALDI MS of Particular Bacteria Genera and Species | 300 | | | | 13.4.1 Bacillus spp. | 300 | | | | 13.4.2 Staphylococcus spp. | 310 | | | | 13.4.3 Streptococcus spp. | 311 | | | | 13.4.4 Mycobacterium spp. | 312 | | | | 13.4.5 Other Gram-Positive Bacteria | 313 | | | | 13.4.6 Escherichia coli | 315 | | | | 13.4.7 Gram-Negative Food- and Waterborne Pathogen | | | | | Proteobacteria Other Than E. coli | 316 | | | | 13.4.8 Typical Sexually Transmitted Pathogens: Neisseria spp. and | | | | | Haemophilus spp. | 318 | | | | 13.4.9 Gram-Negative Biothreat Agent Bacteria | 319 | | | | 13.4.10 Other Gram-Negative Bacteria | 320 | | | | 13.4.11 Pathogenic Cyanobacteria | 322 | | | 13.5 | Strategies for the Identification of Biomarkers in Whole Cell | | | | | MALDI MS Spectra | 323 | | | | 13.5.1 Protein Database Consideration | 323 | | | | 13.5.2 On-Target Treatment and Analysis | 324 | | | | 13.5.3 'Off-Target' Analysis and Correlation with Proteomics | | | | | Studies | 325 | | | | 13.5.4 General Consideration of Biomarker Identification | | | | | Strategies | 326 | | | 13.6 | Conclusions and Outlook | 326 | | | | References | 327 | | l 4 | The l | Proteomic Road Map to Explore Novel Mechanisms of | | | | | rial Physiology | 339 | | | Haike | Antelmann and Michael Hecker | | | | 14.1 | Introduction | 339 | | | 14.2 | Proteomics of Protein Secretion Mechanisms in B. subtilis | 340 | | | | 14.2.1 Protein Export Machineries of B. subtilis | 340 | | | | 14.2.2 The Extracellular Proteome of <i>B. subtilis</i> | 341 | | | | 14.2.3 The Cell Wall Proteome of <i>B. subtilis</i> | 342 | | | | 14.2.4 The Membrane Attached Lipoproteome of <i>B. subtilis</i> | 343 | | | | 14.2.5 The Proteome Analysis of Protein Secretion Mechanisms | | | | | in B. subtilis | 344 | | | 14.3 | Definition of Proteomic Signatures to Study Cell Physiology | 349 | | | | 14.3.1 Proteomic Signatures of <i>B. subtilis</i> in Response to Stress | | | | | and Starvation | 349 | | | | | | | | | 14.3.2 | Proteomic Signatures of B. subtilis in Response to | | | | | | |----|---|--|---|-----|--|--|--|--| | | | | Thiol-Reactive Electrophiles Uncovered the Novel | | | | | | | | | | MarR-Type Regulators MhqR and YodB | 351 | | | | | | | | 14.3.3 | The MarR/DUF24-Family YodB Repressor is Directly | | | | | | | | | | Sensing Thiol-Reactive Electrophiles via the Conserved | | | | | | | | | | Cys6 Residue | 353 | | | | | | | 14.4 | Proteor | nics as a Tool to Visualize Reversible and Irreversible Thiol | | | | | | | | | Modifie | cations | 354 | | | | | | | | 14.4.1 | The Thiol-Redox Proteome of B. subtilis in Response to | | | | | | | | | | Diamide and Quinones | 354 | | | | | | | | 14.4.2 | Depletion of Thiol-Containing Proteins by Quinones Due to | | | | | | | | | | Thiol-(S)-Alkylation | 356 | | | | | | | 14.5 | | mics as a Tool to Define Regulons and Targets for Noncoding | | | | | | | | | RNAs | | 357 | | | | | | | | | wledgements | 361 | | | | | | | | Referei | ices | 361 | | | | | | 15 | The l | Proteom | e of Francisella tularensis; Methodology and Mass Spectral | | | | | | | | | | Studying One of the Most Dangerous Human Pathogens | 367 | | | | | | | | Jiri Stulik, Juraj Lenco, Jiri Dresler, Jana Klimentova, Lenka Hernychova, | | | | | | | | | Lucie Balonova, Alena Fucikova and Marek Link | | | | | | | | | | 15.1 | Introdu | action to Molecular Pathogenesis of Francisella tularensis | | | | | | | | | Infection | | 367 | | | | | | | 15.2 | Francis | sella tularensis LVS Proteome Alterations Induced by | | | | | | | | | Differe | nt Temperatures and Stationary Phase of Growth | 369 | | | | | | | | 15.2.1 | Introduction | 369 | | | | | | | | 15.2.2 | Experimental Procedure | 370 | | | | | | | | 15.2.3 | Results and Discussion | 372 | | | | | | | | 15.2.4 | Conclusion | 375 | | | | | | | 15.3 | Analys | is of Membrane Protein Complexes of F. tularensis | 375 | | | | | | | | 15.3.1 | Introduction | 375 | | | | | | | | 15.3.2 | Analysis of Oxidative Phosphorylation Membrane Protein | | | | | | | | | | Complexes of F. tularensis by 2D BN/SDS-PAGE | 377 | | | | | | | 15.4 | Analys | is of F. tularensis Glycoproteins and Phosphoproteins | 382 | | | | | | | | 15.4.1 | Introduction | 382 | | | | | | | | 15.4.2 | Methods | 383 | | | | | | | | 15.4.3 | Results | 385 | | | | | | | | 15.4.4 | Discussion | 386 | | | | | | | | 15.4.5 | Conclusion | 387 | | | | | | | 15.5 | | cation of F. tularensis Transcription Factors Potentially | | | | | | | | | | ed in Its Virulence | 387 | | | | | | | | 15.5.1 | Introduction | 387 | | | | | | | | 15.5.2 | Methods | 388 | | | | | | | | Contents | XV | | | |-----|--|--|-----|--|--| | | | 15.5.3 Results and Discussion | 388 | | | | | | 15.5.4 Conclusion | 389 | | | | | | Acknowledgements | 390 | | | | | | References | 390 | | | | 16 | | rial Post-Genomics Approaches for Vaccine Development a Bernardini, Daniela Braconi and Annalisa Santucci | 395 | | | | | 16.1 | Introduction | 395 | | | | | 16.2 | Comparative Genomics | 397 | | | | | 16.3 | Transcriptomics | 398 | | | | | 16.4 | Proteomics and Immmunoproteomics | 399 | | | | | 16.5 | Other High-Throughput Technologies | 401 | | | | | 16.6 | Meningococcal Vaccines and Reverse Vaccinology | 401 | | | | | 16.7 | Helicobacter pylori Vaccines | 402 | | | | | 16.8 | Conclusions | 403 | | | | | | References | 404 | | | | Par | t VI | Statistical Analysis of 2D Gels and Analysis of | | | | | | | Mass Spectral Data | 409 | | | | 17 | Data Mining for Predictive Proteomics Graham Ball and Ali Al-Shahib | | | | | | | 17.1 | Introduction | 411 | | | | | 17.2 | Pre-Processing MS Data | 412 | | | | | | 17.2.1 Noise Reduction, Baseline Removal and Normalization | 412 | | | | | | 17.2.2 Feature Selection | 413 | | | | | 17.3 | Classification of MS Data | 414 | | | | | | 17.3.1 Clustering | 415 | | | | | | 17.3.2 Support Vector Machines | 416 | | | | | | 17.3.3 Decision Trees | 417 | | | | | | 17.3.4 Random Forest | 418 | | | | | | 17.3.5 Artificial Neural Networks | 418 | | | | | 17.4 | Evaluation of Classification Models | 419 | | | | | | References | 420 | | | | 18 | with | Spectrometry for Microbial Proteomics: Issues in Data Analysis
Electrophoretic or Mass Spectrometric Expression Proteomic Data
sha A. Karp | 423 | | | | | 18.1 | Introduction | 423 | | | | | 18.2 | Experimental Design | 424 | | | | | | 18.2.1 How Many Measurements/Observations are Needed? | 424 | | | | | | 18.2.2 What Type of Repeat Measurement Should be Used? | 426 | | | | | | 18.2.3 Sampling Depth | 428 | | | | | | 18.2.4 Randomization within an Experimental Design | 429 | | | | | 18.3 | Data Ana | alysis | 429 | |-----|-------|------------|--|-----| | | | 18.3.1 | Understanding the Statistical Tests: | | | | | | Is It Statistically Significant? | 429 | | | | 18.3.2 | Understanding the Statistical Tests: | | | | | | The Hypothesis Test Outcomes | 431 | | | | 18.3.3 | Understanding the Statistical Tests: | | | | | | Is It Biologically Significant? | 432 | | | | | Understanding the Statistical Tests: | | | | | | The Multiple Testing Problem | 432 | | | | | Understanding the Statistical Tests: the Assumptions | 434 | | | 18.4 | Validatio | on | 436 | | | 18.5 | Conclusi | ions | 437 | | | | Reference | ces | 438 | | Par | t VII | | esequencing by MALDI-TOF-Mass Spectrometry and Its tion to Traditional Microbiological Problems | 441 | | 19 | Com | parative l | DNA Sequence Analysis and Typing Using Mass | | | | | rometry | | 443 | | | Chris | tiane Hon | nisch, Yong Chen and Franz Hillenkamp | | | | 19.1 | Introduc | tion | 443 | | | 19.2 | | ative Sequence Analysis by MALDI-TOF MS | 447 | | | 19.3 | Applicat | tions of Nucleic Acid Analysis by MALDI-TOF MS in | | | | | Clinical | Microbiology | 455 | | | 19.4 | Conclus | | 459 | | | | Reference | ces | 460 | | 20 | MAI | DI-TOF- | Traditional Serotyping System (Kauffmann–White) onto a -MS Platform for the Rapid Typing of Salmonella Isolates Catherine Arnold and Saheer E. Gharbia | 463 | | | 20.1 | Introduc | ction | 463 | | | 20.2 | Salmone | ella, the Pathogen | 464 | | | | 20.2.1 | Biology | 464 | | | | 20.2.2 | Pathogenesis | 465 | | | | | Clinical Disease | 465 | | | 20.3 | Comple | x Genetic Structure and the Need to Subtype this Genus | 466 | | | | 20.3.1 | Phylogeny | 466 | | | | 20.3.2 | Virulence and Gene Transfer | 466 | | | | 20.3.3 | Necessity to Subtype | 467 | | | 20.4 | - | ic Analysis – the Traditional Kauffmann–White Scheme | | | | | and Its | | 468 | | | | 20.4.1 | Serotyping | 468 | | | | 20.4.2 | Flagellar Antigens | 469 | | | | • | Contents | xvii | |-------|---------|--|----------|------| | | 20,4,3 | Flagellar Variation | | 469 | | | 20.4.4 | Somatic Antigens | | 471 | | 20.5 | Sequen | ice-Based Methods to Determine Serotypes | | 475 | | | 20.5.1 | Flagellin Sequences Correspond Directly to Salmonell | а | | | | | Serotype | | 477 | | | 20.5.2 | Specific SNPs | | 477 | | | 20.5.3 | Subtyping by Antigen Sequence | | 478 | | | 20.5.4 | Variation of the Rfb Genes | | 478 | | 20.6 | Transfe | erring to a MALDI Platform for Rapid Analysis | | 479 | | | 20.6.1 | Different Methods Available | | 480 | | | 20.6.2 | MALDI-TOF Data Analysis | | 481 | | | 20.6.3 | Salmonella Molecular Serotyping as a Case Study | | 481 | | | 20.6.4 | Gene Selection | | 481 | | | 20.6.5 | Results Overview | | 482 | | | 20.6.6 | Clustering and Sequence Variation of Amplicons | | 482 | | 20.7 | Conclu | sions and Summary | | 488 | | | 20.7.1 | Closing Remarks | | 490 | | | Referei | nces | | 490 | | Index | | | | 497 |