

## **CONTENTS**

| Introduction: | Engineering the Tissue Extracellular Matrix with Hybrid Biomaterials  Esmaiel Jabbari                                                                  | 1   |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| SECTION 1:    | Synthesis, Characterization and Self-Assembly                                                                                                          |     |
| Chapter 1:    | Bulk and Solution Properties of Peptide-Polymer<br>Conjugates<br>Autumn Carlsen, Harm-Anton Klok and<br>Sébastien Lecommandoux                         | 15  |
| Chapter 2:    | Polymer-Peptide Conjugate Networks: Formation, Swelling and Degradation  Donald L. Elbert                                                              | 61  |
| Chapter 3:    | Peptide Self-assembly Biomaterials Design and Application Xiaojun Zhao, Songtao Wang, Yangrong Lu and Jingqiu Cheng                                    | 83  |
| Chapter 4:    | Micropatterned Polymer Structures for Cell and<br>Tissue Engineering<br>Kyung-Jin Jang, Deok-Ho Kim, Sun-Min Kim,<br>Andre Levchenko and Kahp-Yang Suh | 101 |
| Chapter 5:    | Synthesis and in vitrolin vivo Response to<br>Peptide-Polymer Conjugates<br>Amy S. Chung and Weiyuan John Kao                                          | 121 |
| SECTION 2:    | Hybrid Biomaterials in Drug Delivery and Molecular Recognition                                                                                         |     |
| Chapter 6:    | Synthesis of Multi-epitopic Glycopeptide-based<br>Cancer Vaccines<br>Olivier Renaudet, Isabelle Bossu and Pascal Dumy                                  | 147 |
| Chapter 7:    | Stimuli-sensitive Particles for Drug Delivery Stephanie J. Grainger and Mohamed E. H. El-Sayed                                                         | 171 |

vi Contents

Subject Index

| Chapter 8:  | Design and Synthesis of Endosomolytic Conjugated<br>Polyaspartamide for Cytosolic Drug Delivery<br>Kwangwon Seo and Dukjoon Kim                                                                 | 191 |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| Chapter 9:  | Engineering of Cell-penetrating Peptide-conjugated<br>Intracellular Delivery Systems<br>Rupa R. Sawant and Vladimir P. Torchilin                                                                | 213 |
| SECTION 3:  | Cell Responsive Biomaterials in Tissue Engineering                                                                                                                                              |     |
| Chapter 10: | Biomimetic Matrices for Integrin-mediated Cell<br>Adhesion<br>Keshia M. Ashe, Duron A. Lee, Kevin WH. Lo,<br>Lakshmi S. Nair and Caţo T. Laurencin                                              | 247 |
| Chapter 113 | Engineering Artificial Stem Cell Niches  Matthias P. Lutolf                                                                                                                                     | 285 |
| Chapter 12: | Engineering Peptides in Hydrogels for Cartilage<br>Tissue Regeneration<br>Zhaoyang Ye and Jennifer Elisseeff                                                                                    | 311 |
| Chapter 13: | Biomimetic Materials for Engineering of Neural Tissues:<br>Control of Cell Adhesion and Guiding Neural Cell<br>Outgrowth with Peptide-conjugated Polymer Structures<br>Jianming Li and Riyi Shi | 347 |
| Chapter 14: | Hybrid Biomaterials for Engineering Vascular Tissues<br>Thomas C. Flanagan, Sebastian Olszewski, Julia Frese<br>and Stefan Jockenhoevel                                                         | 373 |
| Chapter 15: | Dynamic Cell Culture Methods for Functionalized<br>Biomaterials<br>Bonnie C. Landy and Vassilios I. Sikavitsas                                                                                  | 389 |

419