Ultra Low Power Bioelectronics

Fundamentals, Biomedical Applications, and Bio-Inspired Systems

Rahul Sarpeshkar

CAMBRIDGE

Contents

	Ackno	owleagements	page xvi
Section I	Foun	dations	1
1	The b	ig picture	3
	1.1	Importance of ultra-low-power electronics	5
	1.2	The power-efficient subthreshold regime of transistor operation	7
	1.3	Information, energy, and power	9
	1.4	The optimum point for digitization in a mixed-signal system	10
	1.5	Examples of biomedical application contexts	14
	1.6	Principles for ultra-low-power design	17
	1.7	Ultra-low-power information processing in biology	18
	1.8	Neuromorphic system example: the RF cochlea	19
	1.9	Cytomorphic electronics	22
	1.10	Energy sources	23
	1.11	An overview of the book's chapters and organization	24
	1.12	Some final notes	26
2	Feedl	pack systems: fundamentals, benefits, and root-locus analysis	28
	2.1	Feedback is universal	29
	2.2	The basic linear feedback loop	32
	2.3	Connections between feedback loops and circuits	35
	2.4	The seven benefits of feedback	36
	2.5	Root-locus techniques	44
	2.6	Eight root-locus rules	46
	2.7	Example of a root-locus plot	53
	2.8	The zeros of a closed-loop system	55
	2.9	Farewell to feedback systems	55
3	Mos	device physics: general treatment	57
	3.1	Intuitive description of MOS transistor operation	60
	3.2	Intuitive model of MOS transistor operation	63

	3.3	Intuitive energy viewpoint for MOS transistor operation	65
	3.4	The MOS capacitor (MOSCAP)	68
	3.5	Quantitative discussion of the MOSCAP	71
	3.6	Determining $(Q_I + Q_{dep})$ in a MOSCAP for a given ψ_S	73
	3.7	Equating the gate charge and bulk charge	76
	3.8	Quantitative discussion of the MOSFET	79
	3.9	Summary of physical insights	82
4	MOS	device physics: practical treatment	84
	4.1	The κ approximation	85
	4.2	Charge-based current models with the κ approximation	92
	4.3	Derivation of current in weak inversion	93
	4.4	Derivation of current in strong inversion	95
	4.5	Source-referenced model for strong inversion	97
	4.6	Moderate inversion	101
5	MOS	device physics: small-signal operation	103
	5.1	Weak-inversion small-signal models	104
	5.2	Strong-inversion small-signal models	108
	5.3	Small-signal capacitance models in strong inversion	113
	5.4	Extrinsic or parasitic capacitances	120
	5.5	Small-signal capacitance models in weak inversion	122
	5.6	The transit time	123
	5.7	The 'beta' of an MOS transistor	125
6	Deep	submicron effects in MOS transistors	129
	6.1	The dimensionless EKV model	130
	6.2	Velocity saturation	133
	6.3	Drain induced barrier lowering (DIBL)	140
	6.4	Vertical-field effects	143
	6.5	Effect on the intuitive model	145
	6.6	High-frequency transistor models	146
	6.7	Ballistic transport	147
	6.8	Transport in nanoscale MOSFETs	149
	6.9	Tunneling	151
	6.10	Scaling of transistors in the future	152
7	Noise	e in devices	155
	7.1	The mathematics of noise	155
	7.2	Noise in subthreshold MOS transistors	161
	7.3	Noise in resistors	165
	7.4	Unity between thermal noise and shot noise	167

	7.5	Noise in above-threshold MOS transistors	168
	7.6	Input-referred gate noise	169
	7.7	1/f or flicker noise in MOS transistors	170
	7.8	Some notes on 1/f noise	173
	7.9	Thermal noise in short-channel devices	176
	7.10	Thermal noise in moderate inversion	179
	7.11	Induced gate noise	181
	7.12	Some caveats about noise	182
8	Noise	in electrical and non-electrical circuits	184
	8.1	Noise in an RC lowpass-filter circuit	185
	8.2	A subthreshold photoreceptor circuit	187
	8.3	The equipartition theorem	190
	8.4	Noise in a subthreshold transconductance amplifier	193
	8.5	Noise in general circuits	200
	8.6	An ultra-low-noise MEMS capacitance sensor	201
9	Feedb	pack systems	212
	9.1	The Nyquist criterion for stability	212
	9.2	Nyquist-based criteria for robustness: Gain margin	
		and phase margin	216
	9.3	Compensation techniques	219
	9.4	The closed-loop two-pole τ-and-Q rules for feedback	
		systems	228
	9.5	Conditional stability	229
	9.6	Describing-function analysis of nonlinear feedback systems	231
	9.7	Positive feedback	232
	9.8	Feedback in small-signal circuits	233
	9.9	The 'fake label' circuit-analysis trick	235
	9.10	A circuit example	235
10	Retur	n-ratio analysis	240
	10.1	Return ratio for a dependent generator	241
	10.2	Return ratio for a passive impedance	243
	10.3	Transfer function modification with the return ratio	244
	10.4	Robustness analysis with the return ratio	249
	10.5	Examples of return-ratio analysis	250
	10.6	Blackman's impedance formula	256
	10.7	Driving-point transistor impedances with Blackman's	
		formula	258
	10.8	Middlebrook's extra-element theorem	261
	10.9	Thevenin's theorem as a special case of return-ratio analysis	264

	10.10	Two final examples of return-ratio analysis	265
	10.11	Summary of key results	270
Section II	Low-p	ower analog and biomedical circuits	273
11	Low-po	ower transimpedance amplifiers and photoreceptors	275
	11.1	Transimpedance amplifiers	275
	11.2	Phototransduction in silicon	278
	11.3	A transimpedance-amplifier-based photoreceptor	283
	11.4	Feedback analysis of photoreceptor	286
	11.5	Noise analysis of photoreceptor	292
	11.6	The adaptation resistor R_A	294
	11.7	Experimental measurements of the photoreceptor	296
	11.8	Adaptive biasing of I_A for energy efficiency	297
	11.9	Zeros in the feedback path	298
12	Low-po	ower transconductance amplifiers and scaling laws	
	for pov	ver in analog circuits	301
	12.1	A simple ordinary transconductance amplifier (OTA)	302
	12.2	A low-power wide-linear-range transconductance amplifier:	
		the big picture	303
	12.3	WLR small-signal and linear-range analysis	305
	12.4	WLR dc characteristics	310
	12.5	Dynamic characteristics of the WLR	317
	12.6	Noise analysis	317
	12.7	Distortion analysis	322
	12.8	Signal-to-noise ratio and power analysis	323
	12.9	Scaling laws for power in analog circuits	325
	12.10	Low-voltage transconductance amplifiers and low-voltage	
		analog design	326
	12.11	Robust operation of subthreshold circuits	329
13	Low-p	ower filters and resonators	330
	13.1	G_m -C filter synthesis	331
	13.2	Gyrators	333
	13.3	Introduction to second-order systems	334
	13.4	Synthesis of a second-order G_m - C filter	337
	13.5	Analysis of a second-order G_m – C filter	339
	13.6	Synthesis and analysis of an alternative G_m-C filter	342
	13.7	Higher-order G_m - C filter design	347
	13.8	A –s ² -plane geometry for analyzing the frequency response	
		of linear systems	347

14	Low-po	ower current-mode circuits	354
	14.1	Voltage versus current	355
	14.2	Static translinear circuits	356
	14.3	Dynamic translinear lowpass filters	359
	14.4	Dynamic translinear integrators and high-order filters	365
	14.5	Biasing of current-mode filters	367
	14.6	Noise, SNR, and dynamic range of log-domain filters	370
	14.7	Log-domain vs. G_m – C filters	372
	14.8	Winner-take-all circuits	373
	14.9	Large-signal operation of the winner-take-all circuit	379
	14.10	Distributed-feedback circuits	380
15		ow-power and neuron-inspired analog-to-digital conversion	
	for bio	medical systems	385
	15.1	Review of ADC topologies	389
	15.2	A neuron-inspired ADC for biomedical applications	395
	15.3	Computational ADCs and time-to-digital ADCs	408
	15.4	A time-based $\Sigma\Delta$ ADC	410
	15.5	Pipelined ADCs with comparators	411
	15.6	Adiabatic charging and energy-efficient comparators in ADCs	412
	15.7	Digital correction of analog errors	415
	15.8	Neurons and ADCs	416
Section	n III Low-p	ower RF and energy-harvesting circuits for biomedical systems	419
† 6	Wirele	ss inductive power links for medical implants	421
	16.1	Theory of linear inductive links	422
	16.2	Experimental system design	441
	16.3	Experimental measurements	448
17	Energy	r-harvesting RF antenna power links	454
	17.1	Intuitive understanding of Maxwell's equations	455
	17.2	The non-lossy, one-dimensional transmission line	456
	17.3	The impedance of free space	459
	17.4	Thevenin-equivalent circuit models of antennas	459
	17.5	Near-field coupling	463
	17.6	Far-field coupling: the 'monopole' antenna	463
	17.7	Far-field coupling: basics of dipole antennas	465
	17.8	Directional radiation and antenna gain	467
	17.9	Derivation of far-field transfer impedance or Z_{12}	469
	17.10	Impedance matching: the Bode-Fano criterion	471
	17.11	Making the antenna and the load part of the matching network	474

	17.12	Rectifier basics	477
	17.13	Rectifier analysis and optimization	481
	17.14	Output voltage ripple in rectifiers	482
	17.15	Latchup in CMOS rectifiers	483
	17.16	Rectifier modeling	483
	17.17	Experimental measurements	486
	17.18	Summary	488
18	Low-po	ower RF telemetry in biomedical implants	489
	18.1	Impedance modulation in coupled parallel resonators	493
	18.2	Impedance-modulation transceiver	495
	18.3	Pulse-width modulation receiver	503
	18.4	Dynamic effects in impedance modulation	505
	18.5	Experimental results for a complete transceiver	508
	18.6	Energy efficiency of the uplink and downlink	511
	18.7	Scaling laws for power consumption	
		in impedance-modulation links	511
	18.8	The energy per bit in impedance-modulation links	518
	18.9	Incoherent versus coherent RF receivers	522
	18.10	Radiated emissions and FCC regulations	523
	18.11	Seven considerations in choosing a carrier frequency	524
	18.12	RF antenna links for implants	525
	18.13	The skin depth of biological tissue	525
Section	n IV Biome	dical electronic systems	529
19	Ultra-lo	ow-power implantable medical electronics	531
	19.1	Cochlear implants or bionic ears	534
	19.2	An ultra-low-power programmable analog bionic ear processor	537
	19.3	Low-power electrode stimulation	558
	19.4	Highly miniature electrode-stimulation circuits	562
	19.5	Brain-machine interfaces for the blind	565
	19.6	Brain-machine interfaces for paralysis, speech,	
		and other disorders	572
	19.7	Summary	575
20	Ultra-io	ow-power noninvasive medical electronics	579
	20.1	Analog integrated-circuit switched-capacitor model of the heart	581
	20.2	The electrocardiogram	585
	20.3	A micropower electrocardiogram amplifier	590
	20.4	Low-power pulse oximetry	595
	20.5	Battery-free tags for body sensor networks	601

	20.6	Intra-body galvanic communication networks	604
	20.7	Biomolecular sensing	605
Section V	Princip	les for ultra-low-power analog and digital design	615
21	Principl	es for ultra-low-power digital design	617
	21.1	Subthreshold CMOS-inverter basics	618
	21.2	Sizing and topologies for robust subthreshold operation	622
	21.3	Types of power dissipation in digital circuits	623
	21.4	Energy efficiency in digital systems	630
	21.5	Optimization of energy efficiency in the subthreshold regime	632
	21.6	Optimization of energy efficiency in all regimes of operation	635
	21.7	Varying the power-supply voltage and threshold voltage	641
	21.8	Gated clocks	641
	21.9	Basics of adiabatic computing	642
	21.10	Adiabatic clocks	645
	21.11	Architectures and algorithms for improving energy efficiency	647
22	Principi	es for ultra-low-power analog and mixed-signal design	651
	22.1	Power consumption in analog and digital systems	653
	22.2	The low-power hand	661
	22.3	The optimum point for digitization in a mixed-signal system	663
	22.4	Common themes in low-power analog and digital design	669
	22.5	The Shannon limit for energy efficiency	671
	22.6	Collective analog or hybrid computation	674
	22.7	HSMs: general-purpose mixed-signal systems with feedback	679
	22.8	General principles for low-power mixed-signal system design	683
	22.9	The evolution of low-power design	691
	22.10	Sensors and actuators	692
Section VI	Bio-ins	spired systems	695
23	Neuron	norphic electronics	697
	23.1	Transmission-line theory	705
	23.2	The cochlea: biology, motivations, theory, and RF-cochlea design	706
	23.3	Integrated-circuit unidirectional and bidirectional RF cochleas	721
	23.4	Audio cochleas and bio-inspired noise-robust spectral analysis	725
	23.5	A bio-inspired analog vocal tract	728
	23.6	Bio-inspired vision architectures	733
	23.7	Hybrid analog-digital computation in the brain	739
	23.8	Spike-based hybrid computers	741
	23.9	Collective analog or hybrid systems	743

	23.10	Energy efficiency in neurobiological systems	743
	23.11	Other work	747
	23.12	Appendix: Power and computation in the brain, eye, ear,	
		and body	747
24	Cytomo	orphic electronics: cell-inspired electronics for systems	
	and sy	nthetic biology	753
	24.1	Electronic analogies of chemical reactions	755
	24.2	Log-domain current-mode models of chemical reactions	
		and protein-protein networks	759
	24.3	Analog circuit models of gene-protein dynamics	766
	24.4	Logic-like operations in gene-protein circuits	769
	24.5	Stochastics in DNA-protein circuits	772
	24.6	An example of a simple DNA-protein circuit	774
	24.7	Circuits-and-feedback techniques for systems and synthetic biology	776
	24.8	Hybrid analog-digital computation in cells and neurons	783
Section	n VII Enerç	gy sources	787
25	Batteri	es and electrochemistry	789
	25.1	Basic operation of a battery	789
	25.2	Example mechanism for battery operation	791
	25.3	Chemical reaction kinetics and electrode current	793
	25.4	Mass-transport limitations	796
	25.5	Large-signal equivalent circuit of a battery	799
	25.6	Battery voltage degradation with decreasing state of charge	802
	25.7	Small-signal equivalent circuit of a battery and of electrodes	806
	25.8	Operation of a lithium-ion battery	812
	25.9	Operation of a zinc-air battery	815
	25.10	Basic operation of fuel cells	816
	25.11	Energy density, power density, and system cost	817
26	Energy	harvesting and the future of energy	822
	26.1	Sources of energy	824
	26.2	Electrical circuit models of mechanical systems	825
	26.3	Energy harvesting of body motion	827
	26.4	Energy harvesting of body heat	831
	26.5	Power consumption of the world	835
	26.6	A circuit model for car power consumption	836
	26.7	Electric cars versus gasoline cars	841
	26.8	Cars versus animals	844
	26.9	Principles of low-power design in transportation	846

26,11	Biofuels
26.12	Energy use and energy generation
Epilogi	ue
Bibliog	raphy

26.10 Solar electricity generation

Index