FUNDAMENTALS of THERMODYNAMICS SI VERSION SEVENTH EDITION Claus Borgnakke | Richard E. Sonntag ## Contents | 1 | INTE | RODUCTION | 1 | |---|-----------------------------------|--|----| | | 1.1 | The Simple Steam Power Plant, 1 | | | | 1.2 | Fuel Cells, 2 | | | | 1.3 | The Vapor-Compression Refrigeration Cycle, 5 | | | | 1.4 | The Thermoelectric Refrigerator, 7 | | | | 1.5 | The Cas Typhine 6 | | | | 1.6
1.7 | The Gas Turbine, 9 The Chemical Rocket Engine, 11 | | | | 1.8 | Other Applications and Environmental Issues, 12 | | | _ | | | | | 2 | CONTROL VOLUMES AND UNITS | | 13 | | | 2.1 | A Thermodynamic System and the Control Volume, 13 | | | | 2.2 | Macroscopic versus Microscopic Point of View, 14 | | | | 2.3 | Properties and State of a Substance, 15 | | | | 2.4 | Processes and Cycles, 16 | | | | 2.5 | Units for Mass, Length, Time, and Force, 17 | | | | 2.6
2.7 | Energy, 19 Specific Volume and Density, 21 | | | | 2.8 | Pressure, 24 | | | | 2.9 | Equality of Temperature, 29 | | | | 2.10 | The Zeroth Law of Thermodynamics, 30 | | | | 2.11 | Temperature Scales, 30 | | | | 2.12 | Engineering Applications, 31 | | | | Sumi | mary, <i>35</i> | | | | Probl | ems, 36 | | | 3 | Pure Substance Behavior | | 43 | | - | 3.1 | The Pure Substance, 44 | | | | 3.2 | Vapor–Liquid–Solid-Phase Equilibrium in a Pure Substance, 44 | | | | 3.3 | Independent Properties of a Pure Substance, 51 | | | | 3.4 | Tables of Thermodynamic Properties, 51 | | | | 3.5 | Thermodynamic Surfaces, 59 | | | | 3.6 | The <i>P–V–T</i> Behavior of Low- and Moderate-Density Gases, 61 | | | | 3.7 | The Compressibility Factor, 64 | | | | 3.8 | Equations of State, 67 | | | | 3.9 | Computerized Tables, 68 | | | | 3.10 Engineering Applications, 70 | | | | | | Summary, 72 | | | | Prob. | lems, 73 | | | 4 | ENERGY TRANSFERS | | 81 | | | 4.1 | Definition of Work, 81 | | | | 42 | Units for Work 83 | | | | 4.3 | Work Done at the Moving Boundary of a Simple Compressible System, 84 | | | | |---|------------|--|-----|--|--| | | 4.4 | Other Systems that Involve Work, 93 | | | | | | 4.5 | Concluding Remarks Regarding Work, 95 | | | | | | 4.6 | Definition of Heat, 97 | | | | | | 4.7 | Heat Transfer Modes, 98 | | | | | | 4.8 | Comparison of Heat and Work, 100 | | | | | | 4.9 | Engineering Applications, 101 | | | | | | Sumr | mary, 104 | | | | | | Probl | ems, 105 | | | | | 5 | ENE | RGY EQUATION FOR A CONTROL MASS | 115 | | | | | 5.1 | The First Law of Thermodynamics for a Control Mass Undergoing a Cycle, 115 | | | | | | 5.2 | The First Law of Thermodynamics for a Change in State of a Control Mass, 116 | | | | | | 5.3 | Internal Energy—A Thermodynamic Property, 122 | | | | | | 5.4 | Problem Analysis and Solution Technique, 124 | | | | | | 5.5 | The Thermodynamic Property Enthalpy, 127 | | | | | | 5.6 | The Constant-Volume and Constant-Pressure Specific Heats, 132 | | | | | | 5.7 | The Internal Energy, Enthalpy, and Specific Heat of Ideal Gases, 133 | | | | | | 5.8 | The First Law as a Rate Equation, 139 | | | | | | 5.9 | Conservation of Mass, 141 | | | | | | 5.10 | Engineering Applications, 142 | | | | | | Sumi | Summary, 145 | | | | | | Prob | lems, 147 | | | | | 6 | ENE | RGY EQUATION FOR A CONTROL VOLUME | 161 | | | | | 6.1 | Conservation of Mass and the Control Volume, <i>161</i> The First Law of Thermodynamics for a Control Volume, <i>164</i> | | | | | | 6.2
6.3 | The Steady-State Process, 166 | | | | | | 6.4 | Examples of Steady-State Processes, 168 | | | | | | 6.5 | The Transient Process, 182 | | | | | | 6.6 | Engineering Applications, 189 | | | | | | | mary, 193 | | | | | | | lems, 196 | | | | | _ | | | 210 | | | | 7 | | E CLASSICAL SECOND LAW OF THERMODYNAMICS | 213 | | | | | 7.1 | Heat Engines and Refrigerators, 213 | | | | | | 7.2 | The Second Law of Thermodynamics, 219 | | | | | | 7.3 | The Reversible Process, 222 | | | | | | 7.4 | Factors that Render Processes Irreversible, 223 | | | | | | 7.5
7.6 | The Carnot Cycle, 226 Two Propositions Regarding the Efficiency of a Carnot Cycle, 228 | | | | | | 7.0
7.7 | The Thermodynamic Temperature Scale, 229 | | | | | | 7.7 | The Ideal-Gas Temperature Scale, 230 | | | | | | 7.8
7.9 | Ideal Versus Real Machines, 234 | | | | | | | | | | | | | 7.10 Engineering Applications, 237 | | | | |----|--|-----|--|--| | | Summary, 240 | | | | | | Problems, 242 | | | | | 8 | ENTROPY FOR A CONTROL MASS | | | | | | 8.1 The Inequality of Clausius, 251 8.2 Entropy—A Property of a System, 255 8.3 The Entropy of a Pure Substance, 257 8.4 Entropy Change in Reversible Processes, 259 8.5 The Thermodynamic Property Relation, 263 8.6 Entropy Change of a Solid or Liquid, 265 8.7 Entropy Change of an Ideal Gas, 266 8.8 The Reversible Polytropic Process for an Ideal Gas, 270 8.9 Entropy Change of a Control Mass during an Irreversible Process, 274 8.10 Entropy Generation, 275 8.11 Principle of the Increase of Entropy, 277 8.12 Entropy as a Rate Equation, 281 8.13 Some General Comments about Entropy and Chaos, 283 Summary, 285 | | | | | | Problems, 287 | | | | | 9 | ENTROPY EQUATION FOR A CONTROL VOLUME | 301 | | | | | 9.1 The Second Law of Thermodynamics for a Control Volume, 301 9.2 The Steady-State Process and the Transient Process, 303 9.3 The Steady-State Single-Flow Process, 310 9.4 Principle of the Increase of Entropy, 314 9.5 Engineering Applications; Efficiency, 317 9.6 Summary of General Control Volume Analysis, 323 Summary, 324 Problems, 326 | | | | | 10 | AVAILABILITY | 340 | | | | | 10.1 Available Energy, Reversible Work, and Irreversibility, 340 10.2 Availability and Second-Law Efficiency, 351 10.3 Exergy Balance Equation, 359 10.4 Engineering Applications, 364 Summary, 365 Problems, 366 | | | | | 11 | POWER AND REFRIGERATION SYSTEMS—WITH PHASE CHANGE | | | | | | 11.1 Introduction to Power Systems, 376 11.2 The Rankine Cycle, 378 11.3 Effect of Pressure and Temperature on the Rankine Cycle, 381 11.4 The Reheat Cycle, 385 | 375 | | | | | 11.5 The Regenerative Cycle, 387 11.6 Deviation of Actual Cycles from Ideal Cycles, 394 11.7 Cogeneration, 397 11.8 Introduction to Refrigeration Systems, 398 11.9 The Vapor-Compression Refrigeration Cycle, 399 11.10 Working Fluids for Vapor-Compression Refrigeration Systems, 402 11.11 Deviation of the Actual Vapor-Compression Refrigeration Cycle from the Ideal Cycle, 403 11.12 Refrigeration Cycle Configurations, 405 11.13 The Ammonia Absorption Refrigeration Cycle, 407 Summary, 409 Problems, 410 | | |----|---|-----| | 12 | POWER AND REFRIGERATION SYSTEMS—GASEOUS WORKING FLUIDS | 421 | | | 12.1 Air-Standard Power Cycles, 421 12.2 The Brayton Cycle, 422 12.3 The Simple Gas-Turbine Cycle with a Regenerator, 429 12.4 Gas-Turbine Power Cycle Configurations, 431 12.5 The Air-Standard Cycle for Jet Propulsion, 434 12.6 The Air-Standard Refrigeration Cycle, 437 12.7 Reciprocating Engine Power Cycles, 439 12.8 The Otto Cycle, 441 12.9 The Diesel Cycle, 445 12.10 The Stirling Cycle, 448 12.11 The Atkinson and Miller Cycles, 448 12.12 Combined-Cycle Power and Refrigeration Systems, 450 Summary, 452 Problems, 454 | | | 13 | IDEAL GAS MIXTURES | 464 | | | 13.1 General Considerations and Mixtures of Ideal Gases, 464 13.2 A Simplified Model of a Mixture Involving Gases and a Vapor, 471 13.3 The First Law Applied to Gas-Vapor Mixtures, 475 13.4 The Adiabatic Saturation Process, 478 13.5 Engineering Applications—Wet-Bulb and Dry-Bulb Temperatures and the Psychrometric Chart, 479 Summary, 485 Problems, 487 | | | 14 | THERMODYNAMIC PROPERTY RELATIONS | 498 | | | 14.1 The Clapeyron Equation, 498 14.2 Mathematical Relations for a Homogeneous Phase, 501 14.3 The Maxwell Relations, 503 14.4 Thermodynamic Relations Involving Enthalpy, Internal Energy, and Entropy, 506 | | | | 14.5 Volume Expansivity and Isothermal and Adiabatic Compressibility, 511 14.6 Real-Gas Behavior and Equations of State, 514 14.7 The Generalized Chart for Changes of Enthalpy at Constant Temperature, 519 14.8 The Generalized Chart for Changes of Entropy at Constant Temperature, 521 14.9 The Property Relation for Mixtures, 525 14.10 Pseudopure Substance Models for Real-Gas Mixtures, 527 14.11 Engineering Applications—Thermodynamic Tables, 532 Summary, 536 Problems, 538 | | | |----|---|-----|--| | 15 | COMBUSTION | 547 | | | | 15.1 Fuels, 547 15.2 The Combustion Process, 551 15.3 Enthalpy of Formation, 558 15.4 First-Law Analysis of Reacting Systems, 560 15.5 Enthalpy and Internal Energy of Combustion; Heat of Reaction, 565 15.6 Adiabatic Flame Temperature, 570 15.7 The Third Law of Thermodynamics and Absolute Entropy, 572 15.8 Second-Law Analysis of Reacting Systems, 573 15.9 Fuel Cells, 578 15.10 Engineering Applications, 581 Summary, 586 Problems, 588 | | | | 16 | PHASE AND CHEMICAL EQUILIBRIUM 6 | | | | | 16.1 Requirements for Equilibrium, 600 16.2 Equilibrium between Two Phases of a Pure Substance, 602 16.3 Metastable Equilibrium, 606 16.4 Chemical Equilibrium, 607 16.5 Simultaneous Reactions, 617 16.6 Coal Gasification, 621 16.7 Ionization, 622 16.8 Applications, 624 Summary, 626 Problems, 628 | | | | 17 | COMPRESSIBLE FLOW | | | | | 17.1 Stagnation Properties, 636 17.2 The Momentum Equation for a Control Volume, 638 17.3 Forces Acting on a Control Surface, 641 17.4 Adiabatic, One-Dimensional, Steady-State Flow of an Incompressible Fluid through a Nozzle, 643 17.5 Velocity of Sound in an Ideal Gas, 645 | | | | | 17.5 velocity of Sound in all right das, 045 | | | | 17.6 | a Nozzle, | 648 | | | |-------|--|---|-----|--| | | Mass Rate | of Flow of an Ideal Gas through an Isentropic Nozzle, 651 | | | | | Normal Shock in an Ideal Gas Flowing through a Nozzle, 656 | | | | | | | d Diffuser Coefficients, 661 | | | | | | nd Orifices as Flow-Measuring Devices, 664 | | | | | nary, <i>668</i> | | | | | Probl | ems, <i>673</i> | | | | | CON | TENTS OF | APPENDIX | | | | APPI | ENDIX A | SI UNITS: SINGLE-STATE PROPERTIES | 68. | | | APPI | ENDIX B | SI UNITS: THERMODYNAMIC TABLES | 701 | | | APPI | ENDIX C | IDEAL-GAS SPECIFIC HEAT | 75 | | | APPI | ENDIX D | EQUATIONS OF STATE | 753 | | | APPI | ENDIX E | FIGURES | 758 | | | ANS | WERS TO | SELECTED PROBLEMS | 763 | | | Inde | EX | | 771 | | | | | | | |