NUMERICAL METHODS IN BIOMEDICAL ENGINEERING

Contents

Preface xiii

Part I: Fundamentals

Chapter 1

	Modeling Biosystems 1		
1.1	Biomedical Engineering 1		
1.2	Fundamental Aspects of Biomedical Engineering 3		
1.3	Constructing Engineering Models 3		
	1.3.1 A framework for problem solving 4		
	1.3.2 Formulating the mathematical expression of conservation 5		
	1.3.3 Using balance equations 7		
	Example 1.1 How conservation laws lead to the Nernst equation		
1.4	Examples of Solving Biomedical Engineering Models by Computer 9		
	1.4.1 Modeling rtPCR efficiency 9		
	1.4.2 Modeling transcranial magnetic stimulation 13		
	1.4.3 Modeling cardiac electrophysiology 14		
	1.4.4 Using numerical methods to model the response of		
	the cardiovascular system to gravity 15		
1.5	Overview of the Text 17		
	1.5.1 Part I: Fundamentals 18		
	1.5.2 Part II: Steady-state behavior (algebraic models) 19		
	1.5.3 Part III: Dynamic biosystems (differential equations) 19		
	1.5.4 Part IV: Modeling tools and applications 19		
1.6	Lessons Learned in this Chapter 20		
1.7	Problems 20		
1.8	References 21		

Chapter 2	Introduction to Computing 23
2.1	
2,2	
2.3	Programming Language Tools and Techniques 27
	2.3.1 Sequences of statements 27
	Example 2.1 Programs that are sequences of statements 28
	2.3.2 Conditional execution 28
	Example 2.2 Simple control flow using ifthenelse 29
	Example 2.3 Use of the switch statement 31 2.3.3 Iteration 34
	Example 2.4 The use of while loops 34
	Example 2.5 Using forend loops 36
	2.3.4 Encapsulation 37
	-
2.4	Example 2.6 Using scripts and functions 37 Fundamentals of Data Structures for MATLAB 39
2,4	A 1 1 37 1
	Example 2.7 Number representation in MATLAB 40
	Example 2.8 Complex numbers 40 2.4.2 Arrays 41
	Example 2.9 Indexing arrays in MATLAB 41 2.4.3 Characters and strings 43
	Example 2.10 Character strings as arrays 43 2.4.4 Logical or Boolean data types 44
	Example 2.11 Logical indexing in MATLAB 44 2.4.5 Cells and cell arrays 46
	Example 2.12 Cell arrays and mixed data types 46
	Example 2.13 Structure arrays and mixed data types 48
	2.4.6 Data structures not explicitly found in MATLAB 48
	Example 2.14 Data structures in MATLAB: implementing a stack 49
	• ·
2.5	Example 2.15 Data type conversion 51
٠.٠	An Introduction to Object-Oriented Systems 52
	Example 2.16 Simple object-oriented programs that are sequences of statements 55
2.6	
2.0	Analyzing Algorithms and Programs 57
	2.6.1 Polynomial complexity 57
	2.6.2 Operation counting 57 Example 2.17 Measuring quantities time at 6.15
	Example 2.17 Measuring execution time as a function of the amount of data 59
2.7	· ·
2.7	Lessons Learned in this Chapter 61

Problems

62

2.8

vii

Chapter 3		Concepts of Numerical Analysis 65
Chapter 3	2 1	Scientific Computing 65
	3.1 3.2	Numerical Algorithms and Errors 66
	3.3	Taylor Series 67
	3.5	Example 3.1 How truncation errors and roundoff errors arise 68
	3.4	Keeping Errors Small 72
	5.1	Example 3.2 An ill-posed problem 72
	3.5	Floating-Point Representation in MATLAB 74
	0.0	3.5.1 The IEEE 754 standard for floating-point representation 75
		Example 3.3 IEEE 754 floating-point representation 75
		3.5.2 Floating-point arithmetic, truncation, and rounding 76
		Example 3.4 Propagation of floating-point errors 77
		Example 3.5 Machine precision in MATLAB 77
		3.5.3 Roundoff error accumulation and cancellation error 78
		Example 3.6 Avoiding overflow 78
		Example 3.7 Avoiding cancellation errors 79
		Example 3.8 Using Taylor series expansions to avoid cancellation
		errors 79
	3.6	Lessons Learned in this Chapter 80
	3.7	Problems 81
	3.8	References 83
Part II: S	tead	ly-State Behavior
Chapter 4		Linear Models of Biological Systems 85
	4.1	Introduction 85
	4.2	Examples of Linear Biological Systems 86
		4.2.1 Force balance in biomechanics 86
		4.2.2 Biomedical imaging and image processing 88
		4.2.3 Metabolic engineering and cellular biotechnology 89
	4.3	Simultaneous Linear Algebraic Equations 90
		4.3.1 Illustration of simple Gauss elimination for a 3×3 matrix 90
		4.3.2 Matrix notation of Gaussian elimination 91
		Example 4.1 Application of the Gauss elimination method 98
	4.4	The Gauss-Jordan Reduction Method 100
		Example 4.2 Application of the Gauss-Jordan reduction method 102
	4.5	Iterative Approach for Solution of Linear Systems 105
	7,5	4.5.1 The Jacobi method 105
		Example 4.3 Application of the iterative Jacobi method 107

viii Contents

110

4.5.2 The Gauss-Seidel method

	Example 4.4 Application of the iterative Gauss-Seidel method 111
4.6	Lessons Learned in this Chapter 114
4.7	Problems 114
4.8	References 116
	Nonlinear Equations in Biomedical Engineering 117
5.1	Introduction 117
5.2	General Form of Nonlinear Equations 118
5.3	Examples of Nonlinear Equations in Biomedical Engineering 120
	5.3.1 Molecular bioengineering 120
	5.3.2 Cellular and tissue engineering 121
	5.3.3 Bioheat transport: photothermal therapy 122
	5.3.4 Biomedical flow transport dynamics 123
5.4	The Method of Successive Substitution 124
5.5	The Method of False Position (Linear Interpolation) 125
5.6	The Newton-Raphson Method 127
	Example 5.1 Cardiovascular physiology 130
	Example 5.2a Solution of the Colebrook equation using Newton-
	Raphson 136
	Example 5.2b Successive substitution method for solution of nonlinear equation 141
	Example 5.2c Solution of the Colebrook equation using linear
	interpolation 145
	Example 5.3 Solution of a Michaelis-Menten kinetics equation using
	the Newton-Raphson method 150
5.7	Newton's Method for Simultaneous Nonlinear Equations 151
	Example 5.4 Determination of receptor occupancy during receptor- ligand dynamics 153
5.8	Lessons Learned in this Chapter 157
5.9	Problems 157
5.10	References 161
)vna	mic Behavior
· ,	

Part III: D

Chapter 5

Chapter 6 Finite Difference Methods, Interpolation and Integration 163

- Introduction 6.1 163
- Symbolic Operators 6.2 164
- Backward Finite Differences 6.3 167

Example 6.1 Express the first-order derivative in terms of backward finite differences with error of order h 169

Contents

		Example 6.2 Express the first-order derivative in terms of backward finite differences with error of order h ² 170
	6.4	Forward Finite Differences 172 Example 6.3 Express the first-order derivative in terms of forward finite differences with error of order h 173 Example 6.4 Express the second-order derivative in terms of forward finite differences with error of order h 173
	6.5	Central Finite Differences 176 Example 6.5 Express the first-order derivative in terms of central finite differences with error of order h ² 176 Example 6.6 Express the second-order derivative in terms of central finite differences with error of order h ² 177
	6.6 6.7	Interpolating Polynomials 178 Interpolation of Equally Spaced Points 182 6.7.1 Gregory-Newton interpolation 182 Example 6.7 Gregory-Newton method for interpolation of equally
	6.8	spaced data 186 Interpolation of Unequally Spaced Points 191 6.8.1 Lagrange polynomials 191 6.8.2 Spline interpolation 192
		Integration Formulas 193 The Newton-Cotes Formulas of Integration 194 6.10.1 The trapezoidal rule 195 6.10.2 Simpson's 1/3 rule 197 6.10.3 Simpson's 3/8 rule 198 6.10.4 Summary of Newton-Cotes integration 200 Example 6.8 Integration formulas—Trapezoidal and Simpson's 1/3 rules 201 Leggang Leggang d in this Chapter 205
	6.12	Lessons Learned in this Chapter 205 Problems 206 References 208
Chapter 7		Dynamic Systems: Ordinary Differential Equations 209
	7.1	Introduction 209 7.1.1 Pharmacokinetics: the dynamics of drug absorption 210 7.1.2 Tissue engineering: cell differentiation, cell adhesion and migration dynamics 211 7.1.3 Metabolic Engineering: Glycolysis pathways of living cells 212 7.1.4 Transport of molecules across biological membranes 213
	7.2 7.3	Classification of Ordinary Differential Equations 214 Transformation to Canonical Form 216

		Example 7.1 Transformation of ordinary differential equations into their canonical form 218
	7.4	Nonlinear Ordinary Differential Equations 221 7.4.1 The Euler and modified Euler methods 221 7.4.2 The Runge-Kutta methods 224 7.4.3 Simultaneous differential equations 227 7.4.4 MATLAB functions for nonlinear equations 227
·	7	Example 7.2 Solution of enzyme catalysis reactions 229
	7.5	Linear Ordinary Differential Equations 233 7.5.1 Method using eigenvalues and eigenvectors 233 7.5.2 MATLAB functions for linear equations 235 Example 7.3 The dynamics of drug absorption 236
	7.6	Steady-State Solutions and Stability Analysis 241
	7.7	Numerical Stability and Error Propagation 246
	7.8	Advanced Examples 248
		Example 7.4 Metabolic engineering: Modeling the glycolysis pathways of living cells 248
		Example 7.5 The dynamics of membrane and nerve cell potentials 255 Example 7.6 The dynamics of stem cell differentiation 264 Example 7.7 Tissue engineering: models of epidermal cell migration
	7.0	271 Laggang Laggang din this Chapter 270
	7.9	Lessons Learned in this Chapter 279 Problems 279
		References 286
Chapter 8		Dynamic Systems: Partial Differential Equations 289
	8.1	Introduction 289
	8.2	Examples of PDEs in Biomedical Engineering 290
		8.2.1 Diffusion across biological membranes 290
		8.2.2 Diffusion of macromolecules and controlled release of drugs 292
		8.2.3 Cell migration on vascular prosthetic materials 293
	8.3	8.2.4 Fluid flow in physiological and extracorporeal vessels 293 Classification of Partial Differential Equations 294
	8.4	Classification of Partial Differential Equations 294 Initial and Boundary Conditions 296
	8.5	Solution of Partial Differential Equations 299
		8.5.1 Elliptic partial differential equations 305
		Example 8.1 Solution of the Laplace and Poisson equations 310
		8.5.2 Parabolic partial differential equations 317
		Example 8.2 Migration of human leukocytes on prosthetic materials 321
		8.5.3 Hyperbolic partial differential equations 327

Contents

	8.6	Polar Coordinate Systems 329
	8.7	Stability Analysis 331
	8.8	PDE Toolbox in MATLAB 331
		Example 8.3 Solution of Fick's second law of diffusion using the
		PDE toolbox 332
	8.9	Lessons Learned in this Chapter 338
	8.10	Problems 338
	8.11	References 343
Part IV: N	/lode	eling Tools and Applications
Chapter 9		Measurements, Models and Statistics 345
	9.1	The Role of Numerical Methods 345
	9.2	Measurements, Errors and Uncertainty 346
	9.3	Descriptive Statistics 349
		Example 9.1 Computing statistics of MRI and CT image intensities
		351
	9.4	Inferential Statistics 356
		Example 9.2 Estimating the mean value of a population from a
		sample 357
		Example 9.3 Hypothesis testing in DNA microarray analysis 383
	9.5	Least Squares Modeling 363
		Example 9.4 Least square fit of a first-order polynomial (straight
		line) 365
		Example 9.5 Least squares fit of a cubic polynomial 367
		Example 9.6 Least squares fit of a nonlinear model 367
		Example 9.7 Least squares fit of a multivariate model 368
	9.6	Curve Fitting 369
		9.6.1 Lagrange interpolating polynomials 369
		9.6.2 Newton divided difference interpolating polynomials 370
		9.6.3 Splines 372
		Example 9.8 Resampling and baseline correction of MALDI-TOF
	0.=	mass spectra data 374
	9.7	Fourier Transforms 379
	0.0	Example 9.9 Separating EEG frequency components 382
	9.8	Lessons Learned in the Chapter 386
	9.9	Problems 387
	9.10	References 388
Chapter 10		Modeling Biosystems: Applications 389

10.1 Numerical Modeling of Bioengineering Systems

10.2 PhysioNet, PhysioBank, and PhysioToolkit

389

391

xii

		10.2.1 ECG simulation 391
		Example 10.1 Using the MATLAB script ECGwaveGen to synthesize
		ECG data 391
		10.2.2 Reading PhysioBank data 395
		Example 10.2 Read and visualize PhysioBank signals and
		annotations 395
	10.3	Signal Processing: EEG Data 397
		Example 10.3 Differential brain activity in the left and right
		hemispheres 400
	10.4	Diabetes and Insulin Regulation 403
		Example 10.4 Simulink model of glucose regulation 405
	10.5	Renal Clearance 411
		Example 10.5 Renal clearance 412
	10.6	Correspondence Problems and Motion Estimation 414
	10.0	Example 10.6 Estimating motion from features on a rigid body
		415
	10.7	PHYSBE Simulations 419
	- • • •	Example 10.7 Normal PHYSBE operation 420
		10.7.1 Coarctation of the aorta 422
		Example 10.8 Simulink model of coarctation of the aorta 423
		10.7.2 Aortic stenosis 426
		Example 10.9 Simulink model of aortic valve stenosis 427
		10.7.3 Ventricular septal defect 430
		Example 10.10 Ventricular septal defect 430
		10.7.4 Left ventricular hypertrophy 434
		Example 10.11 Left ventricular hypertrophy 436
		Example 10.12 Pressure-volume loops 438
	10.8	References 440
Appendice	c	
		Total discountry AD 440
	A:	Introduction to MATLAB 443
	B:	Introduction to Simulink 487
	C:	Review of Linear Algebra and Related MATLAB Commands 517
	D:	Analytical Solutions of Differential Equations 527
	E:	Numerical Stability and Other Topics 575
Index 59	93	