With examples in F# and C#

WITH
FOREWORD BY

/l. MANNING

contents

Sforeword xvii

preface xix
acknowledgments xxi

about this book xxiv

aboul the cover illustration xxx

g

Part 1 LEARNING TO THINK FUNCTIONALLY evenensessonseosasnnss h

5 Thinking differently 3
A 1.1 What is functional programming? 4
1.2 The path to real-world functional programming 6

Functional languages 6 = Functional programming on the NET
platform 7

1.3 Being productive with functional programming 7

The funetional paradigm 7 = Declarative programming style 8
Undersianding what a program does 9 = Concurrency-friendly
application design 10 = How functional style shapes your code 11

1.4 Functional programming by example 12

Expressing infentions using declarative sivle 13 » Understanding code
using immutability 17 « Writing efficient parallel programs 20

vii

CONTENTS

1.5 Introducing F# 21
Hello world in F 22 » From simplicity to the veal world 24

1.6 Summary 27

F,

% Core concepts in functional programming 29
Aj‘ 2.1 The foundation of functional programming 31
2.2 Evaluation of functional programs 32

Working with immutable values 33 « Using immutable data
structures 33 = Changing program state using recursion 34
Using expressions instead of statements 35 v Computation by
caleulation 37

2.3 Writing declarative code 39
Functions as values 39 « Higher-order functions 41

2.4 Functional types and values 45

Type inference in Gk and F# 46 » Introducing the discriminated
union type 47 « Patternmatching 48 « Compile-time program
checking 51

25 Summary 52

; Meet tuples, lists, and functions in F# and C# 54

3.1 Value and function declarations 55

Value declarations and scope 35 » Function declarations 37
Declaring mutable values 59

3.2 Using immutable data structures 60

Introducing tuple type 60 = Implementing a tuple type in C# 63
Calculating with tuples 64 = Pattern matching with tuples 66

3.9 Lists and recursion 68

Recursive computations 68 » Introducing functional lists 69
Functional lists in C# 72 = Functional list processing 74

3.4 Using functions as values 75
Processing listsof numbers 76 = Benefits of parameterized functions

3.5 Summary 79

Exploring F# and .NET libraries by example 81
4.1 Drawing pie charts in F# 82
4.2 Writing and testing code in FSI 83
Loading and parsing data 83 » Calculating with the data 86

79

CONTENTS ix

4.3 Creating a console application 89
4.4 Creating a Windows Forms application 92

Creating the user interface 92 = Drawing graphics 95
Creating the Windows application 101

4.5 Summary 102

Part 2 FUNDAMENTAL FUNCTIONAL TECHNIQUES vovvervaren.. 105

ﬁii; Using functional values locally 107
- 5.1 What are values? 108

Primitive types, value types, and objects 108 = Recognizing values
and data 109

5.2 Multiple values 109

Multiple values in F# and C# 109 « Tuple type and value
constructors 111 = Using tuples compositionally 112

5.3 Alternative values | 114

Discriminated unions in I 115 « Working with alternatives 116
Adding types vs. functions 118 = Using the option type in F# 120

5.4 Generic values 122

.%nplementmg the opiion type in CH 122 » Generic option type in
F# 125 = Typeinference for values 127 = Writing generic
Junctions 129

5.5 Function values 130

Lambda functions 132 = The function type 135 » Functions
of multiple arguments 137

5.6 Summary 140

{/’i’; * Processing values using higher-order functions 142
6.1 Generic higher-order functions 143
Writing generic functions in I'% 144 = Custom operators 145
6.2 Working with tuples 147

Working with tuples using functions 147 » Methods for working
with tuples in C# 150

6.3 Working with schedules 151

Processing a list of schedules 152 = Processing schedules
in C#t 153

CONTENTS

6.4 Working with the option type 154

Using the map function 155 « Using the bind function 155
Fualuating the example step-by-step 156 = Implementing
operations for the option type 158

6.5 Working with functions 160
Fundtion composition 160 « Function composition in C# 162
6.6 Typeinference 163

Twpe inference for function calls in F§ 163 = Aulomalic
generalization 164

6.7 Working with lists 165

Implementing list in F# 165 = Understanding type signatuves of
list functions 166 « Implementing list functions 170

6.8 Common processing language 173
Mapping, filtering, and folding 173 « Thebind operation forlists 174
6.9 Summary 175

Designing data-centric programs 177

7.1 Functional data structures 178

Using the I record type 179 = Functional data structures in G 181
7.2 Flat document representation 182

Drawing elements 183 = Displaying a drawing on a form 184
7.8 Structured document representation 187

Converting representations 188 = XML documeni
representation 191

7.4 Writing operations 194
Updating using a map operation 195 « Calewlating using an
aggregate operation 198

7.5 Ohbject-oriented representations 199

Representing data with structural patterns 200 = Adding
Sfunctions using the visitor pattern 202

7.6 Summary 204

Designing behavior-centric programs 205

8.1 Using collections of behaviors 206

Representing behaviors as objects 206 = Representing behaviors as
functions in C# 207 » Using collections of functions in
C# 208 = Using lists of functions in I 209

CONTENTS xi

8.2 Idioms for working with functions 211

The strategy design pattern. 212 v The command design
pattern. 213 v Capturing state using closures in F# 215

8.3 Working with composed behaviors 219

Records of functions 219 = Building composed behaviors 221
Further evolution of I'% code 222

8.4 Combining data and behaviors 223

Decision trees 23 » Decision trees in F¥ 224 « Decision (rees
in C# 227

8.5 Summary 229

ParT 3 Apvancin FH PROGRAMMING TECHNIQUES cveservn. 234

{ & Turning values into F# object types with members 233
- 9.1 Improving data-centric applications 234

Adding members to ¥ types 235 v Appending members using type
extensions 238

9.2 Improving behavior-centric applications 240
Using vecovds of functions 240 « Using interface object types 241
9.3 Werking with NET interfaces 243

Using NET collections 244 = Cleaning resources using
Disposable 245

9.4 Concrete object types 248

Functional and imperative classes 249 = Implementing interfaces
and casting 251

9.5 Using F# libraries irom CG# 255

Working with records and members 256 = Working with values
and delegates 258

9.6 Summary 259

g ?g Efficiency of data structures 260
4L %4101 Optimizing functions 261

Auwoiding stack overflows with tail recursion 261 = Caching
results wsing memoization 266

10.2 Working with large collections 271

Avoiding stack overflows with tail recursion (again!) 271
Processing lists efficiently 273 » Working with arrays 275

xii CONTENTS

10.3 Introducing continuations 279

What makes tree processing tricky? 279 « Whiting code using
confinuations 281

10.4 Summary 283

Refactoring and testing functional programs 285

11.1 Refactoring functional programs 286

Reusing common code blocks 287 « Tracking dependencies and
side effects 289

11.2 Testing functional code 292

From the intevactive shell to wnit tests 293 = Whriting tesis using
structural equality 296 = Testing composed functionality 299

11.3 Refactoring the evaluation order 300

Different evaluation strategies 301 = Comparing evaluation
strategies 302 « Simulating lazy evaluation using functions 303
Lazy values in F# 304 = Implementing lazy values for C# 306

11.4 Using lazy values in practice 307

Introducing infinite lists 308 v Caching values in a photo
browser 310

11.5 Summary 313

Sequence expressions and alternative workflows 314

12.1 Generating sequences 315
Using higher-order functions 316 = Using iterators in C# 316
Using Fi# sequence expressions 317

12.2 Mastering sequence expressions 320
Recursive sequence expressions 320 = Using infinite
sequences 322

12.3 Processing sequences 325
Transforming sequences with iterators 326 = Filtering ond
projection 327 = Flattening projections 329

12.4 Introducing alternative workflows 334
Customizing query expressions 335 « Customizing the M
language 336

12,5 First steps in custom computations 358

Declaring the comfnitation type 338 « Wriling the
computations 339 « Implementing a computation builder in
¥ 340 « Implementing query operators in C# 342

CONTENTS xiii

12.6 lmplementing computation expressions for options 343
12.7 Augmenting computations with logging 346

Creating the logging computation 346 » Creating the logging
computation 347 = Refactoring using compuiation
expressions 349

12.8 Summary 350

PART 4 APPUIED FUNCTIONAL PROGRAMMING tveseserrrsennnnn. 351

g &%? Asynchronous and data-driven programming 353
- 13.1 Asynchronous workflows 354

Why do asynchronous workflows matter? 354 « Downloading web
pages asynchronously 355 = Understanding how workflows
work 358 = Creating primitive workflows 361

132 Connecting to the World Bank 362

Accessing the World Bank data 363 = Recovering from
Jailures 365

13.3 Exploring and obtaining the data 366
Implementing XML helper functions 366 = Extracting region
lg!odes 368 » Obtaining the indicators 369
13.4 Gathering information from the data 372
Reading values 372 = Formatting data using units of
measure 374 = Gathering statistics about regions 377
13,5 Visualizing data using Excel 378

Writing data to Excel 378 « Displaying data in an Excel
chart 381

13.6 Summary 382

? 1 Writing parallel functional programs 383
AF 14 Understanding different parallelization techniques 384
Parallelizing islands of imperative code 385 » Declarative data

parallelism 386 » Task-based parallelism 390

14.2 Running graphical effects in paraliel 395

Calculating with colovs in Fit 395 = Implementing and running
color filters 396 = Designing the main application 399
Creating and running effects 401 « Pavallelizing the
application 404 = Implementing a blur effect 406

xiv CONTENTS

14.3 Creating a parallel simulation 408

Representing the simulated world 409 » Designing simulation
operations 411 = Implementing helper functions 413
Implementing smart animals and predators 415 = Running the
simulation in parallel 417

14.4 Summary 419

g ﬁ% Creating composable functional libraries 420

e i5.1 Approaches for composable design 421
Composing animations from symbols 421 » Giving meaning to
symbols 422 = Composing values 424 « Composing functions
and objects 425
15.2 Creating animated values 428

Introducing functional animations 428 » Introducing
behaviors 429 = Creating simple behaviors in C# 431
Creating simple behaviors in Ff 433

15.3 Writing computations with behaviors 434

Reading values 434 = Applying & function to a behavior 435
Tyrning functions into “behavior functions” 436
Implementing lifting and map in C# 438

154 Working with drawings 440

Representing drawings 440 » Creating and composing
drawings 442

15.5 Creating animations 445

Implementing the animation form in B¢ 446 « Creating
animations using behaviors 448 = Adding animation
primitives 449 » Creating a solar system animation. 452

15.6 Developing financial modeling language 454

Modeling financial contracts 455 = Defining the
primitives 455 = Using the modeling language 457

157 Summary 459

- Developing reactive functional programs 460
16.1 Reactive programming using cvents 461

Introducing event functions 462 = Using events and
observables 463 = Creating a simple veactive application 466
Declarative event processing using LINQ 467 = Declaring events
mIH 470

16.2

16.3

16.4

16.5

16.6
appendix

CONTENTS XV

Creating reactive animations 471
Using the switch function 472 = Implementing the swilch
function 473
Programming Uls using workflows 474
Weaiting for events asynchronously 474 = Drawing
rectangles 477
Storing state in reactive applications 480
Working with state safely 480 « Creating a mailbox processor 481
Communicating using messages 483 » Encapsulating mailbox
processors 487 = Waiting for multiple events 488
Message passing concurrency 490
Creating a state machine processor 491 = Accessing mailbox

concurrenily 492
Summary 493
Looking ahead 495

resources 498
tnedex 501

